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Abstract
Stereoscopic video has long been the subject of research due to
its capacity to deliver immersive three-dimensional content across
a wide range of applications, from virtual and augmented reality
to advanced human–computer interaction. The dual-view format
inherently provides binocular disparity cues that enhance depth
perception and realism, making it indispensable for fields such as
telepresence, 3D mapping, and robotic vision. Until recently, how-
ever, end-to-end pipelines for capturing, encoding, and viewing
high-quality 3D video were neither widely accessible nor optimized
for consumer-grade devices. Today’s smartphones—such as the
iPhone Pro—and modern Head-Mounted Displays (HMDs)—like
the Apple Vision Pro (AVP)—offer built-in support for stereoscopic
video capture, hardware-accelerated encoding (e.g., HEVC/x265),
and seamless playback on devices like the Apple Vision Pro and
Meta Quest 3, requiring minimal user intervention. Apple refers to
this streamlined workflow as spatial Video. Making the full stereo-
scopic video process available to everyone has made new appli-
cations possible. Despite these advances, there remains a notable
absence of publicly available datasets that include the complete spa-
tial video pipeline on consumer platforms, hindering reproducibility
and comparative evaluation of emerging algorithms.

In this paper, we introduce SVD, a spatial video dataset com-
prising 300 five-second video sequences— 150 captured using an
iPhone Pro and 150 with an AVP. Additionally, 10 longer videos
with a minimum duration of 2 minutes have been recorded. The
SVD dataset is publicly released under an open-access license to
facilitate research in codec performance evaluation, subjective and
objective quality of experience (QoE) assessment, depth-based com-
puter vision, stereoscopic video streaming, and other emerging 3D
applications such as neural rendering and volumetric capture. Link
to the dataset: https://cd-athena.github.io/SVD/
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1 Introduction
Immersive media technologies [1] are redefining how digital con-
tent is experienced by delivering more realistic and visually com-
pelling representations of scenes. Advances in virtual [2, 3], aug-
mented [4], and mixed reality [5] have driven the development
of high-resolution HMD [6, 7], spatial audio integration, and im-
proved stereoscopic rendering. These technologies are enabling
deeply engaging experiences across domains such as entertain-
ment, education, and visual communication, where realism and a
strong sense of presence are essential.

A key component of immersive media is stereoscopic video,
which enhances realism by replicating the way human vision per-
ceives depth through binocular disparity. In practice, this involves
capturing two slightly offset views of a scene—one corresponding
to the left eye and one to the right—using a dual-lens or two-camera
rig that is carefully calibrated to maintain known baseline distance
and optical parameters. During capture, precise synchronization
and geometric calibration ensure that corresponding pixels in each
view lie on the same epipolar line, facilitating accurate disparity
estimation. At playback, specialized display technologies present
each view to the appropriate eye. The human visual system then
fuses these two images, leveraging small interocular differences to
reconstruct a coherent depth map and evoke a convincing sense of
three-dimensional space.

Despite its clear benefits for depth perception, stereoscopic video
production has historically been constrained by increased capture
complexity, the need for rigorous calibration, higher data rates to
accommodate dual streams, and display hardware requirements that
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Table 1: Overview of stereoscopic video datasets.

Dataset Name Year Resolution Description

KITTI Stereo 2012 [8] 2012 1226×370 Outdoor driving scenes
KITTI Stereo 2015 [9] 2015 1242×375 Outdoor driving scenes with dynamic scenes with objects
SceneFlow [10] 2016 960×540 Synthetic stereo sequences
MPI-Sintel [11] 2012 1024×436 (24fps) Synthetic scenes with complex motion and visual effects
RMIT3DV HD 3D Video [12] 2012 1920×1080 (25fps) Thirty-one diverse urban scenes
EPFL MMSPG 3DVQA [13] 2010 1920×1080 (25fp) Six high-quality visual variations
Stereo Video Database [14] 2010 1920×1080 (25fps) Stereo cinema post-production
NAMAD3D [15] 2012 1920×1080(25fps) Natural 3D scenes with twin-lens camera
SVSR-Set [16] 2022 1920×1080 (30fps) Indoor/outdoor with varied motion and lighting

SVD (Ours) 2025 1920×1080 (30fps) Indoor and outdoor, captured with iPhone Pro
2025 2200×2200 (30fps) Indoor and outdoor, captured with AVP

have, until recently, limited its adoption in consumer and broadcast
contexts.

Recently, this barrier has been significantly lowered through con-
sumer devices that support native stereoscopic video workflows.
Smartphones such as the iPhone Pro now offer built-in dual-camera
setups for spatial video capture, while headsets like the AVP and
Meta Quest 3 provide native playback support. These devices also
include hardware-accelerated encoding, enabling efficient compres-
sion using modern codecs like HEVC (x265). Apple has introduced
the term spatial video to describe this tightly integrated pipeline
from capture to playback, which allows users to create and experi-
ence 3D content with minimal technical effort.

While there are many well-established 2D video datasets [17–
19], the availability of high-quality stereoscopic video datasets has
remained limited. This scarcity is largely due to the challenges asso-
ciated with stereo video capture, the lack of accessible stereoscopic
displays, and the need for optimized stereo video encoders. How-
ever, with recent advancements in capture technologies and wider
availability of immersive displays, these barriers have significantly
diminished. To drive research in stereoscopic video processing,
we introduce the Spatial Video Dataset (SVD)—a comprehensive
collection of high-quality stereoscopic video clips captured using
the latest iPhone 16 Pro and AVP devices. The dataset comprises
150 short 5-second videos from each device, along with 10 long-
form sequences captured with both, covering a diverse range of
indoor and outdoor environments, varied motion dynamics, and
unique capture scenarios. SVD is specifically designed to support a
broad spectrum of applications, including stereoscopic image and
video coding, streaming, Quality of Experience (QoE) assessment,
and stereoscopic image and video quality evaluation, providing re-
searchers with a powerful resource for advancing immersive media
technologies.

2 Related work
In this section, we introduce stereoscopic video datasets from the
literature. The KITTI Stereo 2012 dataset [8] serves as a key bench-
mark for stereo vision in autonomous driving. It contains stereo
videos of road scenes captured from a calibrated pair of cameras
mounted on a car. It includes 194 training and 195 test scenes with

resolutions of 1226×370, captured in outdoor environments with
high-resolution stereo cameras.

The KITTI Stereo 2015 dataset [9] builds upon its predecessor
by adding 200 training and 200 test scenes with a resolution of
1242×375 in dynamic environments with moving objects, enhanc-
ing its relevance for real-world driving scenarios.

SceneFlow [10] provides a dataset containing synthetic stereo
videos with a resolution of 960×540. The RMIT3DV HD 3D Video
database [12] is a comprehensive dataset designed to represent
diverse content and visual conditions for various research applica-
tions. It comprises 31 stereoscopic video sequences filmed across
multiple locations at RMIT University and Melbourne CBD, with
durations ranging from 17 seconds to 2.5 minutes. All videos are
recorded using a stereoscopic camera (Panasonic AG-3DA1) in
1920×1080 resolution with 10-bit YUV 4:2:2 encoding at 25fps, en-
suring high visual fidelity and uncompressed quality. This dataset
is particularly valuable for studies involving stereo video quality
assessment, disparity estimation, and 3D visual analysis, providing
high-resolution, uncompressed stereoscopic content for reliable
experimental evaluation.

The MPI-Sintel dataset [11], derived from the open-source ani-
mated film Sintel, is a widely used benchmark originally developed
for optical flow evaluation but also highly relevant for stereoscopic
research. It includes stereo video pairs rendered at a resolution of
1024×436 with rich visual effects such as motion blur, specular re-
flections, and atmospheric conditions, closely mimicking real-world
scenes. Despite being synthetic, its image andmotion statistics align
well with those of natural videos, making it a credible proxy for
stereo vision tasks. With dense ground truth, multiple rendering
passes, and long sequences, MPI-Sintel provides a flexible and re-
producible resource for benchmarking stereo matching, disparity
estimation, and depth-aware video analysis.

The EPFL MMSPG HD 3D Video Database (3DVQA) [13] is a
well-known dataset comprising six stereoscopic video scenes, each
lasting 10 seconds and capturing a variety of colors, textures, mo-
tion, and depth variations. Recorded in 1920×1080 resolution at
25fps, the videos are stored in AVCHD format and compressed with
MPEG-4 AVC/H.264 at 24Mbps. Despite its compression, 3DVQA
preserves high visual quality, making it an ideal resource for stereo
video quality assessment, disparity estimation, and depth-aware
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encoding techniques. Its controlled yet diverse visual content sup-
ports reliable benchmarking in 3D video quality evaluation and
computer vision research.

The Stereo Video Database [14] is specifically designed as a
test resource for research and development in stereo cinema post-
production. It features a diverse collection of sequences shot in
both indoor and outdoor environments under controlled and un-
controlled lighting conditions, capturing various real-world scenar-
ios. The footage includes both steadicam and tripod-based shots,
providing different levels of motion dynamics. The experimental
setup employs a dual-camera rig with two Iconix HD-RH1 cameras
mounted on an Inition ‘bolt’ side-by-side rig. Data is recorded using
Flash XDR units in 4:2:2 XDCAM format with the xd5e codec at a
bitrate of 100 Mbps. All sequences are captured in 1920×1080 reso-
lution at 25fps, ensuring high-quality stereoscopic content suitable
for post-production analysis and stereo depth processing.

In NAMAD3D [15], the sequences were captured using a Pana-
sonic AG-3DAIE twin-lens camera, which features two synchro-
nized lenses with a 60 mm separation, closely matching the hu-
man interpupillary distance for natural-looking 3D content. The
sequences are recorded in 1920×1080 at 25fps. When feasible, un-
compressed dual SDI streams were sent to a Clearview Extreme
system for high-quality recording, applied to sequences like Bar-
rier gate, Hall, News report, Phone call, Soccer, Tree branches, and
Umbrella. In cases where streaming to Clearview was impractical,
like for Basket, Boxer, and Lab, the content was saved directly onto
SD cards in H.264/AVC High-Profile format at a maximum bitrate
of 24 Mbps (average 21 Mbps).

The SVSR-Set [16] dataset consists of 71 stereo videos captured
with a ZED 2 stereoscopic camera. Videos are recorded in 1920×1080
resolution at 30fps for a duration of 20 seconds and are available in
.svo and .avi formats. The dataset includes a wide range of indoor
and outdoor settings, with variations in motion levels and illumi-
nation conditions. To ensure accuracy, the camera underwent a
detailed calibration process to correct potential shifts in its internal
parts. The calibration file, generated once and reused for all record-
ings, contains the exact locations of the left and right cameras and
their optical properties.

3 Spatial Video Dataset
In this section, we introduce our dataset, named SVD (Spatial Video
Dataset), which contains 310 stereoscopic video sequences captured
using both the iPhone Pro and the Apple Vision Pro (AVP). We
recorded a diverse subset of spatial video sequences with each
device, covering a variety of indoor and outdoor scenarios to ensure
content variability across lighting conditions, environments, and
motion characteristics. Specifically, we captured 150 short video
clips of 5 seconds each, along with 10 longer sequences per device,
tailored to streaming-oriented use cases. A grid of the first frames
from 35 randomly selected videos recorded with the iPhone Pro
setup is shown in Fig. 1, providing a visual summary of the diversity
within our dataset.

We begin by detailing the camera configurations and recording
capabilities of the two devices, highlighting their roles in enabling
high-quality spatial video capture without the need for external
calibration or rigs. We then describe the set of low-level features

extracted from the dataset, including spatial and temporal complex-
ity, colorfulness, and luminance statistics, providing a quantitative
characterization of the visual content.

3.1 Camera Configurations
Stereoscopic video capture has traditionally required complex and
carefully calibrated hardware configurations [20, 21]. Conventional
stereoscopic rigs often employ two physically separate cameras
mounted on a rail or a rigid rig. These setups typically required
manual alignment, synchronization, and post-processing to ensure
temporal and geometric consistency between the two video streams.
Moreover, ensuring perfect lens matching, exposure control, and
white balance between the cameras was necessary to avoid visual
discomfort or depth perception errors during playback.

While effective in controlled studio environments, these tradi-
tional systems were bulky, expensive, and impractical for casual
or mobile content capture. Their complexity created a barrier to
the broader adoption of stereoscopic video, particularly among
non-professional users.

Recent innovations in consumer electronics have dramatically
simplified stereoscopic video capture. Modern devices such as the
iPhone Pro and the AVP integrate dual-camera systems and ad-
vanced computational photography pipelines that enable spatial
video recording without the need for external rigs or manual cali-
bration.

3.1.1 iPhone Pro Camera System. The iPhone Pro features native
spatial video recording by utilizing its precisely calibrated wide
and ultrawide rear cameras, which are spaced 19.2 mm apart to
produce depth cues suitable for small screens and head-mounted
displays (HMDs). Apple’s spatial video system integrates real-time
depth estimation, optical stabilization, and synchronized exposure
control to ensure high-quality stereo capture. Videos are recorded
in 1080p at 30 fps in standard dynamic range (SDR) and encoded
in HEVC with stereoscopic metadata, enabling seamless playback
on devices like the AVP. In spatial video capture on the iPhone Pro,
the concept of the "hero eye" refers to the primary camera—the
Wide (1x) lens—that records the main view. This lens provides the
higher-quality image, while the Ultra Wide (0.5x) lens captures a
secondary view that is cropped and scaled to match the primary
perspective.

3.1.2 Apple Vision Pro Camera System. The AVP represents a sig-
nificant advancement in immersive media, offering both playback
and recording capabilities for spatial video. Equipped with a stereo-
scopic 3D main camera system featuring 18 mm lenses with an
ƒ/2.00 aperture, the AVP captures spatial videos at a resolution of
2200 × 2200 pixels per eye at 30 frames per second in SDR. Spatial
videos on the AVP are encoded using the Multiview High-Efficiency
Video Coding (MV-HEVC) format. This format stores stereoscopic
views in separate layers—one for each eye—within a single video
file, accompanied by spatial metadata that enables immersive play-
back experiences. Table 2 compares the spatial video recording
capabilities of the iPhone Pro and the AVP.
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Figure 1: Grid of the first frames from 35 randomly selected spatial videos recorded using the iPhone Pro.

Table 2: Spatial Video Recording: iPhone 16 Pro vs. AVP

Feature iPhone 16 Pro Apple Vision Pro

Resolution & Frame Rate 1920×1080 px @ 30fps (SDR) 2200×2200 px @ 30fps (SDR)
Video Format MV-HEVC MV-HEVC
Horizontal Field of View (FOV) 63.4° 71.6°
Baseline (Interaxial Distance) 19.2mm 63.8mm
Hero Eye Concept Yes (“hero eye” from Wide camera); No (both eye streams equal quality)
Recording Orientation Requirement Landscape -

3.2 Low-Level Video Features
For each video, we extract a comprehensive set of low-level features
on a per-frame basis and include them alongside the original video
in our released dataset. These features are widely used in video
analysis and objective quality assessment, and they cover spatial,
temporal, stereo-view, and perceptual dimensions.

3.2.1 Spatial Complexity. Spatial complexity is a fundamental as-
pect of video content that significantly impacts both perceptual
quality and compression efficiency. Scenes with high spatial de-
tail—such as textures, edges, and fine patterns—are more challeng-
ing to compress without introducing visible artifacts, while simpler,
smoother areas are easier to encode efficiently. For this reason,
spatial complexity is widely used in video quality assessment and
adaptive encoding strategies.

In our dataset, we quantify spatial complexity using two com-
plementary features: Spatial Information (SI) and Spatial Complex-
ity (SC). SI measures edge strength by applying a Sobel filter to
each frame, capturing local contrast and sharpness. It is a well-
established feature in standards such as ITU-T P.910 and correlates
strongly with perceived detail. SC, on the other hand, is derived
from the EVCA framework [22] and operates in the DCT domain,
capturing frequency-based spatial variation and block-level detail.

It computes the spatial complexity by applying a weighted sum to
the DCT coefficients of each block, where higher-frequency com-
ponents are given greater emphasis to reflect the contribution of
fine textures and detailed patterns within the frame.

3.2.2 Temporal Complexity. Temporal complexity reflects the amount
of motion and dynamic change within a video, which significantly
affects both perceived quality and compression performance. Videos
with fast-moving objects, frequent cuts, or high activity between
frames typically demand more resources for encoding and are more
susceptible to motion-related artifacts.

To capture temporal complexity in our dataset, we use two
complementary metrics: Temporal Information (TI) and Tempo-
ral Complexity (TC). TI is a well-established feature computed as
the standard deviation of pixel-wise differences between consecu-
tive frames, providing a frame-level measure of motion intensity.
Higher TI values indicate stronger temporal variation, which is
critical for tasks like motion-aware encoding, frame rate control,
and adaptive streaming.

In addition to TI, we include TC, a motion-sensitive feature in-
troduced in the EVCA framework [22]. Unlike TI, which operates
in the pixel domain, TC is calculated in the DCT domain by com-
puting the sum of absolute differences (SAD) between the weighted
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(a) AVP Features (b) iPhone Features

Figure 2: Comparison of feature distributions from AVP and iPhone datasets.

DCT coefficients of corresponding blocks across consecutive frames.
This weighting scheme emphasizes high-frequency components
and thus captures subtle motion details and structural changes
more effectively. TC has been shown to correlate more strongly
with perceptual temporal complexity than earlier pixel-domain
metrics.

3.2.3 Colorfulness. Colorfulness is a perceptual attribute that re-
flects the intensity and diversity of colors within a video frame. It
plays an important role in visual quality perception, content clas-
sification, and aesthetic evaluation. Videos with rich and varied
colors tend to be perceived as more vivid and engaging, while those
with dull or limited color ranges may appear flat or less appealing.
In our dataset, we include a colorfulness metric introduced in [23],
which combines the mean and standard deviation of red-green and
yellow-blue color differences. The colorfulness feature is computed
for each frame of both left and right views, allowing for the analysis
of color consistency across stereo pairs.

3.2.4 Luminance. In addition to spatial, temporal, and color fea-
tures, we also include luminance-based metrics to capture the over-
all brightness and contrast characteristics of each frame. Specifically,
we compute the mean and variance of the luminance (Y) channel for
both left and right views. These features provide insight into light-
ing conditions, exposure balance, and perceptual contrast within
the video, which can influence both encoding efficiency and visual
quality perception.

3.2.5 Disparity. Disparity refers to the horizontal offset between
corresponding points in the left and right views of a stereoscopic
video, and it provides a key cue for depth perception. To capture
disparity information in our dataset, we compute dense disparity
maps for each video frame using the Semi-Global Block Matching
(StereoSGBM) algorithm [24], as implemented in OpenCV. This
method balances local accuracy with global smoothness by aggre-
gating matching costs along multiple paths, making it suitable for
high-resolution stereo content.

3.2.6 SSIM. In addition to disparity, we compute the Structural
Similarity Index (SSIM) [25] between the left and right views of each

video frame to assess their perceptual correspondence. SSIM is a
widely used image quality metric that evaluates luminance, contrast,
and structural similarity, providing a more perceptually relevant
comparison than pixel-wise differences. In our context, it serves as
a complementary feature to disparity, offering a view-independent
measure of stereo consistency. High SSIM values indicate strong
structural alignment between the views, while lower values may
signal mismatches, occlusions, or inconsistencies in stereo render-
ing.

Fig. 2 shows the distribution of the extracted low-level features
for videos captured with the AVP and iPhone Pro devices using ker-
nel density estimation (KDE) plots. All features—including spatial
complexity, temporal complexity, luminance, disparity, and SSIM
(scaled by 100 for better visual representation)-are computed on a
per-frame basis for both the left and right views. The values are
then averaged across all frames to produce a single representative
feature vector per video. These KDE plots highlight the differences
in content characteristics and capture profiles between the two de-
vices, offering insights into the diversity and quality of the dataset.

Fig. 3 shows the correlation between corresponding low-level
features extracted from the left and right views, along with the
average SSIM values, for both the AVP and iPhone Pro devices.
This analysis provides insight into the consistency of stereo con-
tent captured by each device. The results indicate that the AVP
exhibits stronger correlations between views across most features,
as well as higher SSIM scores, suggesting more consistent stereo
alignment and better structural similarity. This highlights the supe-
rior stereo capture quality of the AVP compared to the iPhone Pro
in our dataset. The lower consistency observed in the iPhone Pro
recordings may be attributed to the "hero eye" concept, where the
Wide (1x) camera serves as the primary view and the Ultra Wide
(0.5x) camera is cropped and aligned post-capture. This asymmetric
processing can introduce disparities in quality and content between
the two views.
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Figure 3: Correlation of low-level features and average SSIM
between left and right views for spatial videos recorded with
the iPhone Pro and AVP (AVP).

4 Potential Applications
The rich set of features and high-quality stereoscopic content in-
cluded in our dataset enables a wide range of research and de-
velopment applications across multimedia, computer vision, and
immersive media domains. Below, we outline several key areas
where this dataset can be effectively leveraged.

4.1 Codec Development and Comparison
This dataset serves as a practical benchmark for codec development
and evaluation, particularly for stereoscopic and multiview con-
tent. Earlier standards, such as MVC in H.264 [26] and MV-HEVC
in HEVC [27], introduced inter-view prediction to improve com-
pression efficiency for stereo video. More recently, Apple adopted
MV-HEVC for its Spatial Video format, and as of version 4.1, the
x265 encoder added support for MV-HEVC, enabling optimized
stereoscopic encoding within its efficient compression framework.

With rich diversity—including spatial and temporal complexity,
disparity, and SSIM—our dataset allows for comprehensive codec
comparisons in terms of rate-distortion performance, view con-
sistency, and encoding speed. It also supports the evaluation of
fast encoding algorithms and learning-based strategies for content-
adaptive compression.

4.2 Monoscopic-to-Stereoscopic Video
Our dataset can be used to train and evaluate models that convert
monoscopic (2D) videos into stereoscopic (3D) formats—an increas-
ingly important task for supplying immersive content in AR/VR
applications [28, 29]. As an inherently ill-posed problem, stereo con-
version has evolved significantly with deep learning, progressing
from early convolutional approaches to advanced diffusion-based

models. These methods typically generate the right view from the
left by estimating monocular depth and compensating for occluded
regions through inpainting or generative synthesis. However, they
often suffer from artifacts and lack control over structural accuracy.
By offering high-quality stereo pairs, dense disparity maps, and
perceptual similarity metrics such as SSIM, our dataset provides
strong supervision and validation tools for improving the realism,
consistency, and fidelity of stereoscopic view synthesis.

4.3 Video Quality Assessment
Our dataset is well-suited for conducting subjective quality assess-
ments of stereoscopic video, thanks to its diversity in various fea-
tures. This variability enables controlled experiments that evaluate
how different content characteristics influence human perception
of 3D video quality under various viewing conditions, including
head-mounted displays and stereoscopic monitors [30]. The out-
comes of such subjective studies can be used to develop and validate
both full-reference and no-reference video quality metrics tailored
for stereoscopic content [31].

4.4 Video Streaming
The longer video sequences in our dataset make it particularly suit-
able for streaming applications, enabling realistic evaluations of
adaptive delivery strategies over time [32, 33]. These clips support
research in content-aware bitrate ladder construction [34], where
spatial, temporal, and disparity features can inform optimal quality
tiers for stereoscopic video. The dataset also facilitates per-title
encoding [35–37], allowing encoding parameters to be tailored to
individual content characteristics for improved compression effi-
ciency and visual quality. Furthermore, it enables studies on Quality
of Experience (QoE) in 3D streaming, including the effects of bi-
trate fluctuations, depth artifacts, and inter-view inconsistencies.
By combining objective features with potential subjective evalua-
tions, the dataset offers a comprehensive foundation for developing
and testing adaptive streaming algorithms for stereoscopic and
immersive video services.

5 Conclusion
We presented SVD, a publicly available spatial video dataset de-
signed to support a broad range of research in stereoscopic and
immersive media technologies. Captured using consumer-grade
devices—namely the iPhone Pro and AVP—the dataset includes both
short and long-form high-quality stereoscopic video sequences, cov-
ering a wide range of real-world scenes. Alongside the raw videos,
we provide a rich set of low-level features including spatial and
temporal complexity, luminance, colorfulness, disparity, and inter-
view SSIM, enabling in-depth analysis across multiple application
domains.

SVD is specifically tailored for tasks such as codec development
and benchmarking, monoscopic-to-stereoscopic video synthesis,
video quality assessment (both subjective and objective), and adap-
tive streaming. Its inclusion of diverse content types, extended
sequence durations, and per-frame metrics makes it an ideal re-
source for training, evaluating, and comparing algorithms in both
traditional and emerging 3D video processing tasks.



SVD: Spatial Video Dataset MM ’25, October 27–31, 2025, Dublin, Ireland

References
[1] J. Van Der Hooft, H. Amirpour, M. T. Vega, Y. Sanchez, R. Schatz, T. Schierl, and

C. Timmerer, “A Tutorial on Immersive Video Delivery: From Omnidirectional
Video to Holography,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2,
pp. 1336–1375, 2023.

[2] I. Wohlgenannt, A. Simons, and S. Stieglitz, “Virtual Reality,” Business & Informa-
tion Systems Engineering, vol. 62, pp. 455–461, Oct. 2020.

[3] C. Anthes, R. J. García-Hernández, M. Wiedemann, and D. Kranzlmüller, “State of
the art of virtual reality technology,” in 2016 IEEE Aerospace Conference, pp. 1–19,
Mar. 2016.

[4] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic,
“Augmented reality technologies, systems and applications,” Multimedia Tools
and Applications, vol. 51, pp. 341–377, Jan. 2011.

[5] M. Speicher, B. D. Hall, and M. Nebeling, “What is Mixed Reality?,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19,
(New York, NY, USA), pp. 1–15, Association for Computing Machinery, May 2019.

[6] B. Dunphy, G. Young, G. Dinan, and N. Murray, “Integrating Head Mounted
Displays into Live Broadcasting Workflows: Implications and Possibilities from
an Industry Perspective,” in Proceedings of the 2024 ACM International Conference
on Interactive Media Experiences Workshops, (Stockholm Sweden), pp. 131–136,
ACM, June 2024.

[7] R. Cheng, N. Wu, M. Varvello, E. Chai, S. Chen, and B. Han, “A First Look at
Immersive Telepresence on Apple Vision Pro,” in Proceedings of the 2024 ACM on
Internet Measurement Conference, (Madrid Spain), pp. 555–562, ACM, Nov. 2024.

[8] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The
KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3354–3361, June 2012. ISSN: 1063-6919.

[9] M.Menze andA. Geiger, “Object scene flow for autonomous vehicles,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070,
June 2015. ISSN: 1063-6919.

[10] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox,
“A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation,” pp. 4040–4048, IEEE Computer Society, June 2016.
ISSN: 1063-6919.

[11] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A Naturalistic Open Source
Movie for Optical Flow Evaluation,” in Computer Vision – ECCV 2012 (A. Fitzgib-
bon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, eds.), (Berlin, Heidelberg),
pp. 611–625, Springer, 2012.

[12] E. Cheng, P. Burton, J. Burton, A. Joseski, and I. Burnett, “RMIT3DV: Pre-
announcement of a creative commons uncompressed HD 3D video database,” in
2012 Fourth International Workshop on Quality of Multimedia Experience, pp. 212–
217, July 2012.

[13] L. Goldmann, F. D. Simone, and T. Ebrahimi, “A comprehensive database and
subjective evaluation methodology for quality of experience in stereoscopic
video,” in Three-Dimensional Image Processing (3DIP) and Applications, vol. 7526,
pp. 242–252, SPIE, Feb. 2010.

[14] D. Corrigan, F. Pitié, V. Morris, A. Rankin, M. Linnane, G. Kearney, M. Gorzel,
M. O’Dea, C. Lee, and A. Kokaram, “A Video Database for the Development
of Stereo-3D Post-Production Algorithms,” in 2010 Conference on Visual Media
Production, pp. 64–73, Nov. 2010.

[15] M. Urvoy, M. Barkowsky, R. Cousseau, Y. Koudota, V. Ricorde, P. Le Callet,
J. Gutiérrez, and N. García, “NAMA3DS1-COSPAD1: Subjective video quality
assessment database on coding conditions introducing freely available high
quality 3D stereoscopic sequences,” in 2012 Fourth International Workshop on
Quality of Multimedia Experience, pp. 109–114, July 2012.

[16] H. Imani, M. B. Islam, and L.-K. Wong, “A New Dataset and Transformer for
Stereoscopic Video Super-Resolution,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 705–714, June 2022. ISSN:
2160-7516.

[17] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vi-
jayanarasimhan, “YouTube-8M: A Large-Scale Video Classification Benchmark,”
Sept. 2016. arXiv:1609.08675 [cs].

[18] Y. Wang, S. Inguva, and B. Adsumilli, “YouTube UGC Dataset for Video Compres-
sion Research,” in 2019 IEEE 21st International Workshop on Multimedia Signal

Processing (MMSP), pp. 1–5, Sept. 2019. ISSN: 2473-3628.
[19] H. Amirpour, V. V. Menon, S. Afzal, M. Ghanbari, and C. Timmerer, “VCD: Video

Complexity Dataset,” in Proceedings of the 13th ACM Multimedia Systems Confer-
ence, (Athlone Ireland), pp. 234–239, ACM, June 2022.

[20] D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Transac-
tions on Robotics and Automation, vol. 16, pp. 528–541, Oct. 2000.

[21] S. Tzavidas and A. Katsaggelos, “A multicamera setup for generating stereo
panoramic video,” IEEE Transactions on Multimedia, vol. 7, pp. 880–890, Oct. 2005.

[22] H. Amirpour, M. Ghasempour, L. Qu, W. Hamidouche, and C. Timmerer, “EVCA:
Enhanced Video Complexity Analyzer,” inACMMMSys 2024, MMSys ’24, pp. 285–
291, Apr. 2024.

[23] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video. Boston, MA: Springer
US, 2002.

[24] H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual Infor-
mation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
pp. 328–341, Feb. 2008. Publisher: Institute of Electrical and Electronics Engineers
(IEEE).

[25] Z.Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From
Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing,
vol. 13, pp. 600–612, Apr. 2004. Conference Name: IEEE Transactions on Image
Processing.

[26] A. Vetro, T. Wiegand, and G. J. Sullivan, “Overview of the Stereo and Multiview
Video Coding Extensions of the H.264/MPEG-4 AVC Standard,” Proceedings of
the IEEE, vol. 99, pp. 626–642, Apr. 2011.

[27] G. Tech, Y. Chen, K. Muller, J.-R. Ohm, A. Vetro, and Y.-K. Wang, “Overview of the
Multiview and 3D Extensions of High Efficiency Video Coding,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 26, pp. 35–49, Jan. 2016.

[28] J. Zhang, Q. Jia, Y. Liu, W. Zhang, W. Wei, and X. Tian, “SpatialMe: Stereo Video
Conversion Using Depth-Warping and Blend-Inpainting,” 2024. Version Number:
1.

[29] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth Anything: Un-
leashing the Power of Large-Scale Unlabeled Data,” in 2024 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10371–10381, June 2024.
ISSN: 2575-7075.

[30] W. Zhou, H. Amirpour, C. Timmerer, G. Zhai, P. L. Callet, and A. C. Bovik, “Per-
ceptual Visual Quality Assessment: Principles, Methods, and Future Directions,”
2025. Version Number: 1.

[31] Wei Zhou, Ning Liao, Zhibo Chen, and Weiping Li, “3D-HEVC visual quality as-
sessment: Database and bitstream model,” in 2016 Eighth International Conference
on Quality of Multimedia Experience (QoMEX), (Lisbon, Portugal), pp. 1–6, IEEE,
June 2016.

[32] G. Chen, S. Wang, J. Chakareski, D. Koutsonikolas, and M. Dasari, “Spatial Video
Streaming on Apple Vision Pro XR Headset,” in Proceedings of the 26th Interna-
tional Workshop on Mobile Computing Systems and Applications, HotMobile ’25,
(New York, NY, USA), pp. 115–120, Association for Computing Machinery, Feb.
2025.

[33] C. Timmerer, H. Amirpour, F. Tashtarian, S. Afzal, A. Rizk, M. Zink, and H. Hell-
wagner, “HTTP Adaptive Streaming: A Review on Current Advances and Future
Challenges,” ACM Transactions on Multimedia Computing, Communications, and
Applications, p. 3736306, May 2025.

[34] V. V. Menon, H. Amirpour, M. Ghanbari, and C. Timmerer, “OPTE: Online Per-
Title Encoding for Live Video Streaming,” in ICASSP 2022, pp. 1865–1869, May
2022. ISSN: 2379-190X.

[35] H. Amirpour, C. Timmerer, and M. Ghanbari, “PSTR: Per-Title Encoding Using
Spatio-Temporal Resolutions,” in 2021 IEEE International Conference on Multime-
dia and Expo (ICME), pp. 1–6, July 2021.

[36] H. Amirpour, M. Ghanbari, and C. Timmerer, “DeepStream: Video Streaming En-
hancements using Compressed Deep Neural Networks,” Transactions on Circuits
and Systems for Video Technology, pp. 1–1, 2022.

[37] A. Telili, W. Hamidouche, H. Amirpour, S. A. Fezza, C. Timmerer, and L. Morin,
“Convex Hull Prediction Methods for Bitrate Ladder Construction: Design, Evalu-
ation, and Comparison,” ACM Transactions on Multimedia Computing, Communi-
cations, and Applications, p. 3723006, Mar. 2025.


	Abstract
	1 Introduction
	2 Related work
	3 Spatial Video Dataset
	3.1 Camera Configurations
	3.2 Low-Level Video Features

	4 Potential Applications
	4.1 Codec Development and Comparison
	4.2 Monoscopic-to-Stereoscopic Video
	4.3 Video Quality Assessment
	4.4 Video Streaming

	5 Conclusion
	References

