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Abstract
Apple recently unveiled capturing spatial video experiences on an
iPhone and their extended reality (XR) headset Vision Pro. Spatial
videos can be viewed on immersive near-eye displays like the Apple
Vision Pro for a more realistic experience with depth perception.
However, streaming spatial videos encounters several challenges,
such as bandwidth limitations, latency, and synchronization issues
between multiple camera views. This position paper presents a
comprehensive research agenda to address these issues and make
spatial video streaming as ubiquitous as traditional online video
for mobile systems and applications. We outline several research
threads for exploration and discuss a series of novel ideas, including
view-adaptive streaming strategies, multipath support, and QoE
modeling, which we believe will become the fundamental compo-
nents for future video experiences on mobile and wearable devices.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting.
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1 Introduction
In their early years, spatial videos, also known as stereoscopic or
stereo 3D videos1 and their more general form of multi-view video
was considered the future of video communications because of their
∗Both authors contributed equally to this research.
1Spatial video comprises two video streams– one for each eye, captured with two
cameras separated by distance similar to that between the two human eyes. We use
spatial, stereo, and stereoscopic video interchangeably throughout the paper.
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Figure 1: High-level architecture of a spatial video streaming
system. Consumer-grade devices like the iPhone can now
stream spatial videos and be viewed on XR headsets in 3D
with a rich video experience.

similarity to the human visual system, i.e., one camera view for
each eye, providing depth perception [4]. However, spatial videos
needed advanced display technologies and multi-camera capture
pipelines that were not available on consumer-grade devices. They
also faced significant challenges in processing even a single video
stream because of the limited computing, storage, memory, and
networking capacity. Thus, the content producers scaled back their
investments in spatial video communications, turning instead to
enhancing standard monocular videos. This status quo has changed
today with advances in near-eye displays (i.e., XR headsets) and
consumer devices (e.g., iPhones), which can capture, stream, and
play spatial videos.

Different from traditional videos, spatial videos contain two
views and depth perception metadata, offering users a more immer-
sive/realistic experience. While the additional view and metadata
significantly increase the quality of experience for video watch-
ing and mobile communication, they also demand more advanced
devices and spatial video streaming systems. The latter should
transmit two high-quality views in parallel and inject the depth
perception metadata correctly to ensure both views maintain visual
clarity and present an accurate 3D effect at high resolution.

However, meeting the above requirements is not trivial. Our test-
ing with the Apple TV streaming on Vision Pro revealed that spatial
video bandwidth needs could reach as high as a few hundred Mbps
(post-compression). Such bandwidths are not commonly available
across the wide-area Internet for most of the world’s population.
Even in favorable network environments, maintaining such a high
bitrate is challenging due to network variability problems [24].



HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA Guodong Chen, Sizhe Wang, Jacob Chakareski, Dimitrios Koutsonikolas, and Mallesham Dasari

Over the past two decades, multi-view compression standards
such as H.264 MVC [18] and MV-HEVC [29] have been developed.
However, their implementation encoders are computationally ex-
pensive, limiting their practical application. As a result, most cur-
rent existing spatial video streaming solutions still use standard
codecs like H.264/5 [31] applied to each view independently. More-
over, rate-distortion optimized coding, streaming, multiple descrip-
tions, and two-path delivery have been investigated [5, 6, 21]. More
recently, Apple unveiled the first commercial real-time codec for on-
demand and live stereo video streaming scenarios [2]. Additionally,
multi-path networking protocols (e.g., MPTCP [14], MPQUIC [12]
and FBDT [26]) that are suitable for streaming spatial videos and
360◦ videos have gained wider adoption. These technological ad-
vancements, along with the progress in XR headsets, make live
spatial 3D video streaming possible in the near future.

This position paper outlines new research directions for spatial
video streaming (SVS) that work on commodity devices such as
phones and XR headsets. We propose several novel ideas that we en-
vision will become building blocks of next-generation SVS systems.
First, we discuss the need for a new quality of experience (QoE)
models for spatial videos and demonstrate for the first time user
preferences of monocular vs. stereoscopic video playback under
different network conditions. Second, we explore different stream-
ing strategies with bitrate adaptation algorithms for spatial videos,
balancing the video quality and depth perception trade-offs under
constrained networking conditions. Third, we propose a multi-path
scheduling algorithm for spatial videos, where we schedule each
view on a different network path (e.g., WiFi and LTE/5G). Figure 1
shows a high-level architecture.

We obtained preliminary results using an iPhone and Vision Pro
XR headset [1]. To the best of our knowledge, we are the first to
study an end-to-end spatial video streaming system on XR headsets.
We report metrics like video quality of views and depth perception
metrics such as disparity error under different network conditions.
We also evaluate subjective user QoE by conducting a user study
to understand the impact of network artifacts on stereoscopic vs.
monocular videos.

2 Background and Related Work
Spatial videos provide depth perception by presenting two slightly
different perspectives of the same scene to the viewer’s left and
right eyes. Spatial videos are captured with two time-synchronized
cameras with a small horizontal distance between the cameras, em-
ulating the binocular 3D human vision. Unlike other forms of 3D
content, such as 360-degree videos [8] and volumetric videos [19],
spatial 3D videos consist of two 2D video streams that together
create a 3D effect. While 360-degree videos present their own view-
port related challenges [15], they do not require depth perception
information and are less sensitive to artifacts, making them easier
to manage. Consumer-grade devices like the iPhone 15 Pro and
Vision Pro can now capture spatial videos. These videos can be
viewed using various techniques, such as anaglyph 3D glasses, au-
tostereoscopic displays, and XR headsets (Vision Pro and Quest3).

Commercial content providers today (e.g., YouTube, Apple TV+,
Netflix, etc.) mainly streammonocular videowithMPEG-DASH [17],
HLS andWebRTCusing codecs such asH.264/AVC [31] orH.265 [28].

Figure 2: Impact of different spatial video bitrates on user
experience. Users streamed the videos on Vision Pro Headset
and rated their experience from 1 to 5. The key takeaway is
that at lower bitrates, users favor standard monocular video
over spatial 3D video, while at higher bitrates, the preference
shifts to spatial video.

To encode spatial videos, several extensions are built on top of these
standard codecs, such as H.264/MVC (Multiview Video Coding) [18]
and MV-HEVC (Multi-View HEVC) [29].

Much of the early work in spatial video streaming focused on
efficiently compressing the two views2 of the video to exploit the re-
dundancy across the two views of the spatial video [13].While these
coding approaches have shown tremendous success in achieving
high compression efficiency, they were computationally very ex-
pensive. As a result, many spatial video streaming implementations
used a DASH-based streaming strategy by compressing both views
separately while sacrificing the bandwidth and/or quality [27]. An-
other line of research has focused on modeling quality and overall
Quality of Experience (QoE) specifically for spatial videos [7]. How-
ever, most of these works focused on evaluating user experience
on external walled displays (e.g., 3D TVs or autostereoscopic dis-
plays) and did not study the impact of network artifacts such as the
impact of bitrate of individual views on depth perception, latency,
and network variability.

3 Spatial Video Insights on Apple Vision Pro XR
Headset

While there are studies on the QoE assessment of spatial videos
viewed on traditional displays [30], to the best of our knowledge,
there is no study on the viewing experience of mono and spatial
videos under bitrate constraints on XR headsets. To address this
gap, we conducted a subjective user study on user preferences for
mono and spatial videos encoded with the same bitrate ladder. We
developed a spatial video player app for Vision Pro, which includes
features like stereoscopic playback and user rating interfaces de-
signed with simple interactions.

We ask users for a five-point score ranging from 1 (Bad) to 5
(Excellent) based on three criteria: visual quality, depth perception,
and overall QoE. A total of 15 non-expert subjects participated
in the study. Each user wore the headset and watched 40 video
clips (15 seconds each) consisting of mono and spatial videos at
four different quality levels, presented in random order. The five
selected scenes covered spatial and temporal complexity. Figure 2
shows results.

2we refer to each video stream of the spatial video as a view
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Observations. We found multiple takeaways from this study that
we believe will drive the design of future spatial video streaming
strategies. First, users can perceive depth in both mono and spatial
videos when viewed on the VisionPro headset, with spatial videos
consistently achieving higher experience for depth perception. Sec-
ond, visual quality is higher for mono videos over spatial videos
across various bitrates. This preference can be attributed to the
fact that compressing mono videos, which contain only one view,
allocates more bitrate for quality improvement, thereby enhancing
visual quality perception. Finally, we observe a notable shift in over-
all QoE from low to high bitrates. At lower bitrates (e.g., 1 Mbps and
5 Mbps), users favor mono videos over spatial videos. However, this
preference shifts towards spatial videos at higher bitrates. Such a
finding introduces new research problems for spatial video adaptive
streaming in order to achieve the best QoE: whether to prioritize
streaming stereoscopic videos at low quality or opt for monocular
videos with relatively higher quality. We are currently conducting
a larger-scale study to gain an in-depth understanding of network
artifacts on spatial video streaming.

4 Research Agenda
At a high level, our research agenda is focused on intelligently
decoupling the two views of spatial videos to enable live adaptive
streaming. We introduce a series of key ideas addressing the chal-
lenges in streaming strategies, multi-path streaming, and QoE mod-
eling for spatial video streaming on near-eye XR displays. Specif-
ically, we examine two streaming strategies (§4.1): a traditional
DASH-based approach that encodes and streams two viewpoints
independently and a more integrated layered encoding method us-
ing multi-view codecs like MV-HEVC, which leverages inter-view
redundancy for efficiency. We introduce a new problem of quality
imbalance between two views and propose a super-resolution-based
quality enhancement method to manage bitrate differences between
the two views. Next, we present a dynamic multi-path scheduling
strategy that optimizes the use of multiple network paths in real-
time at the view and packet levels (§4.2). Furthermore, we present
a comprehensive model to assess spatial video QoE, focusing on
the overall depth perception, visual quality of both views and the
impact of their differences (§4.3).

4.1 Streaming Strategies for Spatial Videos
There are two different strategies in the literature for streaming
spatial videos. The first approach is based on a traditional DASH
(dynamic adaptive streaming over HTTP) [17] streaming standard
where both viewpoints are encoded separately, and the bitrate
adaptation for each view is performed independently (see Fig-
ure 3(a)). The second approach is based on multi-view encoding
algorithms [18, 29] where both viewpoints are encoded jointly into
two layers (see Figure 3(b)).

4.1.1 DASH-based spatial video streaming. The DASH-based ap-
proach provides a significant advantage in spatial video streaming
by enabling the use of standard codecs to encode and decode both
views independently and in parallel. This allows us to use exist-
ing streaming infrastructure without any modifications, ensuring
compatibility and flexibility.

(a) DASH-based spatial video streaming

(b) Layered spatial video streaming

Figure 3: Two strategies for streaming spatial videos: a) The
DASH-based system encodes and adaptively streams the
two views independently without exploiting the redundancy
across the views; b) The layered streaming encodes the stereo
views jointly and streams in an incremental layered fashion.

However, this approach introduces multiple fundamental limita-
tions, primarily the increased bandwidth requirement. Since each
viewpoint is encoded separately, the total bandwidth needed is ef-
fectively double that of standard videos, although both viewpoints
overlap significantly. Additionally, the dynamic adaptive feature of
DASH can result in each view being encoded and streamed at dif-
ferent bandwidths. When network congestion occurs, DASH may
select a lower quality for one view to prevent buffering. This can
result in a significant disparity between the quality of the two views,
such as one view being encoded at a very low bitrate (e.g., 1 Mbps)
and the other at a higher bitrate (e.g., 15 Mbps). Such imbalances
can significantly decrease the overall visual QoE [20]. Moreover, the
stereoscopic 3D effect may be disrupted due to the quality difference
between the two views, beyond a certain threshold.

To address these issues, we propose a novel client-side super-
resolution-based bitrate adaptation method that effectively man-
ages bitrate/quality differences between the views. Our adaptive
bitrate (ABR) algorithm deliberately allocates different bitrates to
each view— primary with high quality and secondary with low
quality. To balance the quality difference between the two views,
i.e., improve the quality of the secondary view, we propose a super-
resolution (SR)-based quality enhancement technique. We believe
this method can significantly improve the quality of the lower-
resolution view by leveraging the substantial similarities between
the two views. The key insight here is the ability to recover the
quality of the secondary view accurately using the primary view as
a prior. In the past, SR has shown tremendous benefits in enhancing
the quality in the case of monocular video streaming [3, 8, 25]. The
process involves upsampling a low-resolution image using machine
learning methods. In our approach, the high-resolution primary
view and the lower-resolution secondary view together can recover
a high-resolution secondary view effectively, thus maintaining a
balanced video quality across the views and overall depth percep-
tion. We will explore different ways of using SR— an offline model
trained per video and streamed online or a universal model that is
trained and shipped to clients offline.
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Figure 4: Apple’s MV-HEVC encoding results in almost equiv-
alent bitrates for both views across different videos.

There are several other open questions we plan to explore. Specif-
ically, the impact of resolution differences between streams on SR
performance is unclear. Understanding how these variations affect
the SR process is a key focus of our study. We will also investigate
the effect of stream arrival delays on SR quality, as synchroniza-
tion issues may arise. Additionally, we will analyze the overhead
of the SR algorithm in terms of delay, memory usage, and power
consumption to ensure feasibility for resource-constrained devices.

4.1.2 Layered spatial video streaming. The above strategy, while
effectively adapting spatial video bitrates, suffers from compression
inefficiency because of separate encoding of the views. Unlike the
DASH approach, layered spatial video streaming exploits redun-
dancy between views to achieve lower bitrates for the secondary
view while maintaining the same quality as the primary view. Our
studies found that, in theory, using a state-of-the-art multi-view
encoder— MV-HEVC [29] can achieve up to 40% bitrate savings on
the secondary view compared to the primary view.

However, the use of multi-view codecs, like MV-HEVC, has sig-
nificant challenges. These codecs are computationally demanding
to achieve optimal bitrate savings, making them unsuitable for
real-time applications. The complexity primarily arises from the
complex inter-view frame prediction process that identifies similar
blocks of pixels across views to compute residuals. This process
is analogous to motion estimation in temporal frames, but it is
conducted across views. Additionally, the lack of mature spatial
video technology in the past meant that no hardware solutions were
developed to support multi-view codecs, complicating their deploy-
ment. To circumvent this complexity, many existing solutions opt
for a less intensive frame prediction approach, both temporally and
across views, at the expense of compression efficiency. For instance,
despite deploying MV-HEVC in Apple products like the iPhone and
Vision Pro headset, we find almost no difference in bitrates between
the left and right views. However, for MV-HEVC encoding standard,
the second view should reference frames that are in the main view,
which is reasonable to save 40% or more for the second layer. So, the
almost identical bitrate for both views contradicts the fundamental
advantage of multi-view coding methods, showing that current
MV-HEVC is not mature. We have experimentally observed this
outcome in our evaluation by capturing spatial videos on an iPhone
and Vision Pro for 20 different scenes. We illustrate it in Figure 4
for three representative videos.

To address these challenges, we propose a content-aware adap-
tation strategy that trades the frame prediction process between
views and temporal frames for optimal compression while maintain-
ing coding speeds suitable for real-time applications. This strategy
is based on a key insight: the computational complexity of frame
prediction primarily arises from the high residual information (i.e.,
difference) between frames. Larger differences require more intensive
computation, while smaller differences are less demanding.

4.2 Multi-path Spatial Video Streaming
Today’s mobile devices widely support multiple network interfaces
(e.g., WiFi, Cellular, Satellite, etc). Leveraging multi-path transport
protocols (e.g., MPTCP [14] or MPQUIC [12]) allows applications
to use network interfaces simultaneously and significantly improve
user QoE. There has been extensive work on using multi-path
for conventional video streaming [22, 23]. While many of these
techniques can be directly applied to spatial video streaming, we
identify several new opportunities for further improving spatial
video QoE based on tighter application integration with MPQUIC.
We note that advanced wireless links like FSO [16] provide very
high speeds that are sufficient for streaming high-quality videos
but are far from practical to realize them in realistic settings.

4.2.1 View vs. packet-level scheduling. A straightforward method
for streaming spatial video involves sending the primary view over
the faster path and the secondary view over the slower one. This
approach is advantageous for two main reasons: Firstly, it ensures
the primary view arrives and is decoded before the secondary view.
By the time the secondary view reaches the application, the primary
view is already prepared as a reference for decoding the secondary
view. Secondly, this method avoids the classic head-of-line (HoL)
blocking problem, where packets arriving on the slower path create
a bottleneck for those on the faster path, as the application needs to
process packets from both paths. Essentially, the stereoscopic video
application requires the primary view first, then the secondary,
which effectively balances out the flow.

However, the above approach is effective only if the network
paths consistently maintain one as slow and the other as fast, which
is rarely the case in practice. Network path latency and bandwidth
can vary significantly. Furthermore, when using more than two
paths, it becomes necessary to schedule packet-level rather than
view-level, in which case we encounter the aforementioned HoL
blocking problem.

To address the above issues, we propose a NAL (network ab-
straction layer) unit-level multi-path scheduling strategy that dy-
namically allocates application-level video packets (i.e., NAL units)
across multiple paths based on real-time network conditions. NAL
units are fundamental units of compressed video data standardized
in H.264/AVC and MV-HEVC codecs. We schedule an entire NAL
unit on a given path rather than scheduling transport-level packets
as in conventional multi-path streaming strategies. Each frame in
these codecs typically comprises several NAL units. The rationale
for this strategy hinges on the independence of NAL units for each
view. This independence allows for prioritizing the transmission
of NAL units from the primary view across multiple paths before
those from the secondary view. Also, since packets within a single
NAL unit are interdependent for decoding, streaming an entire NAL
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unit over a single path can effectively mitigate the HoL blocking
issue that delays the decoding of NAL units. The benefit of this
approach compared to existing multi-path streaming methods such
as XLINK [32] and Chorus [22] is that we do not encounter the
redundancy overhead due to packet re-injection in addressing the
HoL blocking problem since we are prioritizing the primary view
across all paths, to ensure its arrival before the secondary view.

We also explore a classical problem of mismatch between the
transport layer’s sending rate and the application layer’s selected
video bitrate based on the ABR algorithm because they are done
separately [22]. The key questions we explore here include—How
can ABR algorithms be assisted in making accurate bitrate decisions
for spatial content under multi-path scenarios? How can transport
performance consistently meet the QoE requirements of spatial
video streaming in dynamic network conditions? We explore a
joint scheduling strategy that predetermines transmission deci-
sions for both streams before the actual data transmission begins.
This schedule will be computed based on transport, which informs
the ABR algorithms of the expected throughput for both paths
proactively and allows adjustments based on transport-level band-
width predictions. We will incorporate a two-way feedback control
loop to facilitate the exchange of information between the client
and server. This allows the client-side ABR algorithm to predict
throughput based on the server’s pre-determined scheduling deci-
sions and enables the server packet scheduler to adjust its decisions
dynamically during transmission.

4.3 Network Impact on Spatial Video QoE
The ultimate goal of this research agenda is to improve QoE in
spatial video streaming. To maximize QoE, we must model the
key factors of spatial videos affected by network artifacts. Unlike
conventional monocular videos, depth perception is fundamental
to spatial videos. Other metrics like video quality are extensively
explored for monocular videos [9–11] but still require further inves-
tigation for spatial videos to understand the impact of the relative
quality difference of each view. The networking community has
under-explored these factors.

Impact of network artifacts on depth perception: Spatial videos are
just two 2D videos captured from two viewpoints; the camera has
no true depth. The users are given a sense of depth by projecting the
views to the left and right eye. Since there is no explicit depth map
here, we plan to use the disparity map as a proxy, which inversely
relates to depth, i.e., high disparity indicates that objects are closer
to the viewer, and vice versa. The disparity can be defined as the
horizontal distance between each pixel in both views.We can obtain
a disparity map by computing it for all pixels. Figure 5 shows the
effect of different bitrates on disparity maps.

Our key observation here is that any change in the video quality
of the spatial video can affect depth perception, leading to a cor-
ruption in disparity (D𝑑 ). When viewing such spatial videos with
corrupted disparity, we observe the dislocation of the objects in
the scene, creating unnatural depth conflicts under poor network
conditions. We compute the PSNR (peak signal-to-noise ratio) of
disparty maps extracted from stereo videos at different bitrates
using a reference disparity map extracted from the original stereo
video, as shown in Figure 6. The figure shows that reduced bitrates

Figure 5: Disparity maps extracted from two spatial videos
at different bitrates. Significant depth details are missing at
low bitrate compared to high bitrate, which creates depth
conflicts when viewed on XR headsets.
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Figure 6: Effect of bitrate on disparity quality between two
spatial views measured in PSNR (dB): Lower bitrates degrade
disparity quality in stereoscopic videos, as seen by the de-
crease in PSNR values across rates from 30 Mbps to 1 Mbps.

result in poorer disparity quality, with a significant decrease in
PSNR (by 3.5dB) from 30 Mbps to 1 Mbps.
Video quality imbalance between spatial views: The distortion in video
quality for each view for different bitrates can be calculated sep-
arately (say D𝑙 for left view and D𝑟 for right view) using the
standard video quality metrics that are used for monocular videos
(e.g., PSNR, SSIM, or VMAF). Let D𝑣 be the overall visual distor-
tion observed by the users. A straightforward way to compute D𝑣

is by averaging D𝑙 and D𝑟 . This makes sense only if each view
is encoded at symmetric quality, i.e., the same bitrate (or quality)
for both views. However, for bitrate adaption, spatial views must
encoded asymmetrically (i.e., different bitrate for each view). In
this case, the overall visual distortion must be modeled nonlinearly
such as using harmonic mean or weighted power mean.

We explore two approaches: 1) harmonic mean of distortions
and 2) weighted power mean. The harmonic mean is particularly
sensitive to smaller values, which makes it suitable for emphasizing
the impact of the view with the lower quality in the overall distor-
tion: 2

1
D𝑙

+ 1
D𝑟

. This is heavily influenced by the worse quality of the

two views. On the other hand, the weighted power mean allows
for adjusting the emphasis on higher or lower distortions for each

view in a more generalized way and is given as
(
𝛼 ·D𝑝

𝑙
+(1−𝛼 ) ·D𝑝

𝑟

2

) 1
𝑝

,
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where 𝛼 is a weighting factor between left and right view, and 𝑝

adjusts the focus on distortions, e.g., if 𝑝 > 1, higher distortions are
emphasized. If 𝑝 < 1, lower distortions are emphasized. If 𝑝 = 1, it
simplifies to an arithmetic mean. It becomes the Euclidean norm if
𝑝 = 2.

Modeling overall distortion: We combine the above disparity and
visual distortion metrics to obtain the overall user-perceived distor-
tion in quality using the following model: log(1 + D𝑑 ) + 𝜆𝑣 · D𝑣 ,
where 𝜆𝑣 is a weight pertains to the visual quality of the spatial
video, accounting for distortions in the left and right views. Small
changes in disparity at different depths can have a disproportion-
ately large effect on perceived depth. Disparity distortions can vary
widely depending on content and encoding quality. We use a log-
arithmic function that helps compress a large range of disparity
values into a smaller, more manageable scale.

Other factors:Multiple other factors must be considered during
bitrate adaptation that we consider in our future work. For example,
a virtual screen is used to view a spatial video on an XR headset.
Unlike traditional displays, users can adjust the virtual screen at
different distances from the eye. Similarly, users can change the vir-
tual screen resolution dynamically. The ABR algorithm must adapt
video resolution based on the distance and virtual screen resolution
to utilize network bandwidth effectively. Wewill also consider other
metrics like stalls and startup delays that are commonly explored
in conventional streaming.

5 Conclusions
We present a comprehensive research agenda for spatial video
streaming on emerging XR headsets. Our approach comprises view
and packet adaptive bitrate algorithms, multipath support, and a
QoE model, and tackles key challenges in delivering high-quality
spatial 3D video content under constrained network settings. We
are currently building a holistic live spatial video streaming sys-
tem integrating all of our proposed methods with system-level
optimization methods.
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