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Fig. 1: 4DGStream integrates Light4D, which utilizes binarization-assisted spatiotemporal optimization for compact represen-
tation of dynamic 3D Gaussians, and QoSmooth for adaptive bitrate streaming. The two rightmost figures show performance
on the flaming salmon scene (from Neu3D) and the overall Neu3D dataset.

Abstract—While 3D Gaussian Splatting (3DGS) has revolu-
tionized static scene representation, the extension to dynamic
scene, i.e., 3ADGS video (GSV), faces challenges related to re-
construction quality, rendering speed, and storage requirements.
The substantial data volume of current GSV poses significant
hurdles for streaming applications, particularly in the realm
of AR, VR and MR. To tackle these challenges, we introduce
4DGStream, a novel framework that integrates an efficient
GSV compression method, Light4D, and a bitrate adaptation
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streaming strategy, QoSmooth, to ensure smooth playback while
maintaining high visual quality. Light4D employs a binarization-
assisted spatiotemporal deformation network to model the de-
formation of Gaussian primitive attributes over time, while a
spatiotemporal-aware masking module prunes trivial Gaussians,
further enhancing long-term reconstruction quality. To reduce
storage, Light4D uses a binary hash grid to model the entropy of
attributes for arithmetic coding, with its binary nature allowing
efficient entropy modeling via a Bernoulli distribution. These
components enable Light4D to improve the FPS/Storage metric
by up to 12.4x over SpacetimeGS and 26.4x over 4DGS on
the Neu3D dataset, with performance gains exceeding 3x orders
of magnitude compared to other NeRF-based state-of-the-art
(SOTA) methods. Here, FPS/Storage reflects the balance between
rendering speed and data storage. Despite significant model size
reductions, Light4D maintains or surpasses the reconstruction
quality of 4DGS. Furthermore, QoSmooth provides effective
rate control to enhance playback smoothness, reducing bitrate
level switches by 61.6% and increasing time-average utility by
26.2%. All these improvements make 4DGStream highly suited
for GSV streaming, improving QoE by 36.7% compared to SOTA
methods.

Index Terms—3D Gaussian Splatting, Compression, Media
Streaming, Quality of Experience, Virtual Reality.

I. INTRODUCTION

ecent advancements in 3D scene representations have
Rrevolutionized the field of novel view synthesis, with
3D Gaussian Splatting (3DGS) [1] emerging as a particu-
larly promising approach. By representing scenes as explicit,
learnable 3D Gaussians, 3DGS achieves rapid differentiable
rendering and high photo-realistic fidelity, surpassing previous
methods based on Neural Radiance Fields (NeRF) [2]. This



breakthrough has led to widespread adoption and further
developments in the field, including extensions to dynamic
scenes [3], [4], [5].

The application of 3D Gaussian Splatting to dynamic scenes
introduces significant challenges due to the increased com-
plexity of modeling temporal changes. Existing compression
techniques [6], [7], [8], [9], [10], [11] for static 3D Gaus-
sian representations, such as parameter pruning and vector
quantization, fail to efficiently handle the complex motion of
points from sparse input in dynamic scenes. A straightfor-
ward approach involves constructing 3D Gaussians at each
timestamp [3], [12] and applying compression to each frame
of static 3DGS, but this dramatically increases storage and
memory costs, especially for long input sequences.

Recent works have largely focused on constructing compact
representations while maintaining both training and rendering
efficiency [4], [5], leaving the streaming of GSV relatively
unexplored yet important. While these methods could be
adapted for streaming, challenges persist. First, the current
GSV representations remain too large in size. Second, in video
streaming, bitrate adaptation requires smooth transitions, but
existing GSV representations do not incorporate rate-distortion
joint optimization [13] during training, making it difficult to
balance size and visual quality, which in turn complicates the
smooth transmission between different bitrate levels. Third,
existing methods [4], [5], [14], [15], [16], [17], [18] use large
grid features for modeling, which cannot be progressively
transmitted or gradually improved on the client side, leading to
potential buffering issues as the entire grid must be transmitted
successfully before rendering can proceed.

To tackle these issues, we propose 4DGStream, a novel
framework designed to efficiently compress GSV using
Light4D and streaming using QoSmooth. Our Light4D in-
troduces four key innovations, (1) utilizing a spatiotemporal
deformation network with hybrid 2D-3D features generated
by binary-encoded K-planes voxel grids to effectively capture
scene dynamics; (2) implementing a spatiotemporal-aware
learnable masking strategy to prune less crucial Gaussians
over time, optimizing both storage efficiency and rendering
quality, (3) leveraging binary hash grid to model the entropy
of attributes for entropy coding, and (4) employing a Bernoulli
modeling based technique to compress binary hash grid into
compact bitstream for transmission. The rate-distortion joint
loss is incorporated during optimization, enabling a more effi-
cient, variable bitrate method for representing and compressing
GSV. Additionally, the QoSmooth is a Lyapunov optimization-
based method that adaptively selects bitrate level during GSV
streaming, balances the trade-off between smooth playback
and maintaining visual quality to maximize the QoE.

Through extensive experiments on various dynamic scenes,
our GSV representation method Light4D achieves comparable
visual quality to 4DGS while requiring only 8.9% of its
storage on synthetic datasets. On real-world datasets, our ap-
proach matches or exceeds the performance of SOTA methods
while using as little as 3.3% of their storage requirements.
Additionally, our efficient encoding and decoding processes
make Light4D particularly suitable for real-time streaming
applications. Fig. 1 demonstrates an overall comparison that

Light4D achieves an extremely compact size while delivering
comparable visual quality in dynamic scenes. On the Neu3D
dataset, Light4D achieves improvements of up to 12.4x
compared to SpacetimeGS and 26.4x compared to 4DGS in
the FPS/Storage metric, which evaluates the balance between
rendering efficiency and data storage requirements. The main
contributions of this work can be summarized as follows:

« We propose 4DGStream, which, to the best of our knowl-
edge, is the first variable bitrate streaming framework for
dynamic Gaussian scenes. It enables efficient compres-
sion of dynamic 3D scenes and smooth playback under
varying network conditions.

« We develop a deep context model to enable entropy
coding for attributes and leverage Bernoulli modeling to
capture the entropy of the binary hash grid for efficient
compression. This, combined with rate-distortion opti-
mization, balances the trade-off between reducing file size
and maintaining acceptable visual quality.

« We propose a Lyapunov-optimization based bitrate adap-
tion algorithm for GSV streaming.

« We conduct comprehensive experiments across various
datasets, demonstrating SOTA performance in terms of
visual quality, rendering speed, and storage efficiency,
QoE, thus validating the effectiveness of our approach.

II. RELATED WORK

A. Neural and Gaussian-based Volumetric Video

The advent of neural representations [19], [20], [21], [22]
has revolutionized dynamic volumetric video reconstruction.
Several NeRF-based methods [23], [24] have enhanced train-
ing and rendering speed through specialized tuning strategies,
while others [25], [26], [20] have introduced novel encod-
ing techniques to improve data efficiency. Despite these ad-
vancements, NeRF-based approaches, though achieving high
compactness, still face significant challenges in rendering
efficiency, even after being adapted into more efficient for-
mulations [15], [27].

Recent research has made significant strides in extending
3D Gaussian Splatting to dynamic scenes, enabling high-
quality novel view synthesis and real-time rendering of moving
objects and environments. These approaches [3], [28], and [5]
introduced methods that allow Gaussians to move and rotate
over time while maintaining persistent attributes, employing
various techniques such as local-rigidity constraints, neural
deformation models, and spacetime Gaussian representations.
Other researchers, including [29], [30], and [4], focused on
improving the efficiency of dynamic scene reconstruction and
rendering, achieving real-time performance through techniques
like dual-domain deformation modeling, neural transformation
caches, and 4D neural voxels. Additionally, [31], [32], and [33]
proposed methods that enhance the editability, geometric co-
herence, and reconstruction quality of dynamic 3D Gaussian
representations, further advancing the field of dynamic scene
modeling and rendering. While these existing methods have
expanded capabilities, they often rely on large-scale data
representations that are difficult to transmit efficiently. This
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Fig. 2: Overview of our proposed system - 4DGStream

makes the development of compression techniques increas-
ingly urgent.

B. 3D Data Compression

NeRF Compression. Recent advancements in Neural Radi-
ance Field (NeRF) compression have significantly improved
the efficiency and applicability of these models. The Vector
Quantized Radiance Fields (VQRF) framework [34] achieves
a 100x compression ratio through voxel pruning, vector
quantization, and post-processing, reducing model size to 1
MB with minimal quality loss. Similarly, Binary Radiance
Fields (BiRF) [35] proposes a binary feature encoding method
inspired by Binarized Neural Networks, achieving impressive
PSNR results while using only 0.5 MB of storage space.
The Compressible-composable NeRF [36] approach enables
efficient manipulation of 3D models through hybrid tensor
rank decomposition and rank-residual learning, allowing for
dynamic model size adjustment and model composition. These
NeRF compression techniques build upon broader research
in model compression and efficient neural network architec-
tures [37], [38], [39].

3D Gaussian Splatting compression. As 3D Gaussian Splat-
ting techniques have advanced, researchers have also focused
on developing efficient compression methods to reduce storage
requirements and enable practical applications on devices with
limited resources. Various approaches have been proposed to
achieve this goal. These approaches [6], [7], [8] introduced
methods that significantly reduce the storage requirements of
3DGS models. By employing approaches such as hash-grid
assisted contexts, self-organizing grids, and compact radiance
field representations, these methods achieve compression ratios
ranging from 17x to 75x without substantial loss in rendering
quality. Other researchers, including [9], [40], [11], and [41],
focused on optimizing the representation of 3D Gaussians
through techniques like anchor point-based distribution, rate-
distortion optimization, and sensitivity-aware vector clustering.
These methods have demonstrated impressive compression
rates of up to 40x, while maintaining high rendering quality
and even improving rendering speed in some cases.

C. Volumetric Video Streaming

Traditional volumetric video streaming. Streaming volumet-
ric video is a challenging task and attracts many research
interests [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51] Volumetric video streaming faces high bandwidth de-
mands due to its panoramic nature. Nasrabadi et al. [42]
supported layered streaming using Scalable High efficiency
Video Coding standard [52]. Additionally, tile-based viewport-
adaptive techniques have been proposed to address this issue
by predicting users’ viewports and allocating higher bitrates to
the most relevant areas [53], [54], [55], [56], [57], [58], [59].

Dynamic 3D Gaussians Scene Streaming. There is limited
work on streaming dynamic 3D Gaussians. While dynamic 3D
Gaussian representations [1], [4], [5], [60] are not explicitly
designed for streaming, they could be adapted for such sce-
narios. However, these methods still pose significant storage
demands, making their application to streaming challenging.

Several notable online training methods have been devel-
oped for on-the-fly reconstruction and real-time streaming.
Dynamic 3D Gaussians [3] track dense 3D Gaussians by
modeling their motion over time, but still suffer from high
temporal redundancy. 3DGStream [30] achieves efficient Free-
Viewpoint Video streaming by leveraging 3D Gaussians com-
bined with a Neural Transformation Cache strategy, enabling
fast per-frame reconstruction and real-time rendering of dy-
namic scenes. This approach reduces both training time and
storage requirements while maintaining high rendering speed
and visual quality. QUEEN [61] updates and compresses
all 3DGS attributes without structural constraints, using a
quantization-sparsity framework to achieve better memory
efficiency and faster training times. However, despite these
advancements, these methods still require storage sizes ranging
from hundreds of megabytes to several gigabytes for a 10-
second video. Furthermore, online training methods still fall
short of meeting the real-time standard of 30 FPS. As a result,
both online and offline dynamic Gaussian splatting methods
are currently unsuitable for GSV live streaming, where the en-
tire pipeline—from data capture to scene reconstruction—must
operate at a minimum of 30 FPS. In this context, our focus
shifts from live streaming to video-on-demand (VoD) sce-
narios, which do not require online reconstruction. Instead,



VoD requires online video bitrate adaptation to accommodate
varying network conditions and ensure smooth and reliable
playback.

III. BACKGROUND AND MOTIVATION
A. 3D Gaussians

Starting from a set of Structure-from-Motion (SfM) [62]
points, each point is designated as the position (mean) u of a
3D Gaussian.

G(x) = e*%(X*#)TZ"(X*ﬂ) 1)

where u € R? is its center and ¥ € R**3 denotes covariance
matrix, which can be decomposed into a scaling factor S and
a rotation quaternion R.

¥ = RSSTRT )

Each Gaussian is characterized by attributes including position
X € R3, color C € R&+1?>3 (where k represents the degrees
of freedom), opacity o € R, rotation factor R € R*, and scaling
factor § € R?. The final rendered color C(x’) at a pixel position
x' is determined using a tile-based rasterizer that employs
alpha-blending with sorted 2D Gaussians:

i—1
C)=Y ca(JJ(1-0y) 3)
ieN j=1
where N denotes the number of sorted 2D Gaussians associ-
ated with the queried pixel, 0; = 0;G}(x"), and the terms are
sorted in descending order of opacity.

B. Superiority of 3DGS Video and Network challenges

Point cloud, mesh, NeRF, and 3D Gaussian videos (GSV)
are different techniques for 3D scene rendering. Point cloud
videos capture scenes as discrete 3D points for real-time
rendering but lack surface detail. Mesh videos use polygons
for detailed surfaces but struggle with reflective or trans-
parent elements. NeRF videos generate volumetric scenes
using neural networks, enabling high-quality view synthesis
but are computationally intensive. GSV, leveraging 3DGS,
offers several advantages over traditional volumetric formats
like NeRFs and meshes. Its real-time rendering is efficient
due to the direct projection of 3D Gaussians onto 2D planes,
avoiding the computationally heavy ray-marching of NeRFs.
It also shows robustness in handling transparency and re-
flectiveness [32]. However, with traditional GSV requiring
over 10GBps of storage, significant challenges remain in net-
work performance—such as memory and bandwidth demands,
compression needs, latency, and compatibility with existing
infrastructure—necessitating further optimization for effective
streaming [6], [8], [30], [63], [61].

To bridge this gap, we propose 4DGStream, as illustrated
in Fig. 2. 4DGStream integrates Light4D, an effective com-
pression method that utilizes binary hash grid features to
model GSV into a sequence of lightweight data chunks. Each
chunk offers multiple quality levels for bitrate allocation by
QoSmooth according to network conditions, an online bitrate
adaptation streaming strategy. This integration enables 3D
Gaussian video to be applied in real-world scenarios.

IV. LicuT4D: COMPACT DYNAMIC GAUSSIAN SPLATTING
OPTIMIZATION FRAMEWORK

In this section, we introduce Light4D, as illustrated in
Fig. 3, which shows its detailed pipeline: (a) A spatiotemporal
deformation network leverages a binary hybrid feature grid,
combining 3D voxels and 2D planes across spatial and tempo-
ral axes, to predict attribute deformations from input location
X and timestamp ¢ (§ IV-B). (b) A spatiotemporal-aware
learnable masking module prunes less important Gaussians
over time (§ IV-C). (c) A multi-resolution binary 3D voxel
hash grid with multi-head MLPs predicts entropy of attributes
for arithmetic coding (§ IV-D). (d) A Bernoulli distribution
models the entropy of the binary hash grids in (a) and (c)
for arithmetic encoding (§ IV-E). (e) Hash grids are decoded
first, then used to model attribute entropy for decoding. (f)
Light4D is optimized with a rate-distortion joint loss to
balance rendering quality and bitstream efficiency (§ IV-G).

A. Binary Hash Grid Representation

Hash grids [27] have been instrumental in the fast training
and rendering of 3D scene representation, but it concurrently
imposes a storage burden. Inspired by BiRF [35], we introduce
an innovative approach by employing binary feature encoding
to achieve a storage-efficient and compact representation of
attributes. Specifically, the hash feature embeddings are bina-
rized to {—1,+1} using a sign function, and backpropagation
is carried out through a straight-through estimator (STE) [64].
The 3D voxel hash grid H consists of binary values Gli €
{—1,41} across multiple levels /. For each level [, the hash
grid H; is defined as:

H={6|i=1,..,T;}, 6 c{-1,+1} 4)

where 7; represents the number of entries in the hash table at
level I. We obtained final hash feature H through interpolation
within multi-resolution hash grid [27]. We then build our
spatiotemporal deformation network (§ IV-B) and context
model (§ IV-D) upon on such binary hash grids representation
strategy.

B. Spatiotemporal Deformation Network

Based on the attributes A initialized from points derived
from SfM, where A = {C,R,S,a}, we now extend the scene
from static to dynamic by introducing a spatiotemporal de-
formation field, 6 = {AX,AR,AS,Aa}. Inspired by [16], we
employ K-planes feature encoder to capture the intricate
dynamics of a scene across both spatial and temporal di-
mensions. The dynamic scene is represented by 4D voxels,
which are units in a 4D grid, each containing a set of
Gaussians characterized by attributes that vary over time.
The 4D voxel grid is encoded by hybrid feature grid that
combines both 3D voxels and 2D planes across spatial and
temporal axes. There are six 2D feature planes, each spanning
a pair of coordinate axes. To achieve a storage-efficient and
compact representation, we integrate binary feature encoding
into the hybrid feature grid as described in § IV-A. Given a
Gaussian ¢ at position X = (x,y,z) and time ¢, the features
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Fig. 3: Light4D Framework: a 4D compression framework for encoding dynamic 3D Gaussian Splatting into Lightweight

data chunks.

f4; are computed as follows: For each of the six planes
¢ (representing xy,xz,yz,xt,yt,zt), project the spatiotemporal
coordinate e = (X,#) onto the plane:

fle)e=w(Pe,m(e)) &)

where 7.(e) is the projection of e onto the c-th plane, y
denotes bilinear interpolation on the 2D grid corresponding
to the plane P.. Next, the features from all six planes are
combined using the Hadamard product and then concatenated
over different resolutions:

(e)Xyza U Hf(e)i]

se. S cEC

fa1= lf (6)
where f(e)yy, denotes the 3D grid feature, € represents
the set of all six planes, and . represents the set of all
resolutions. The deformation field § is subsequently obtained
through a multi-heads decoder ®(fy ) = {¢x, 9c, P, s, Pa },
where each component decoder ®;(-) generates deformation
{AX,AC,AR,AS,Ac}. Finally, the Gaussians are deformed:

4 ={X+AX,C+AC,R+AR S+ AS,a+Aa}  (7)

C. Spatiotemporal Aware Learnable Masking

Lossy compression of the geometric information X of
Gaussians results in a significant degradation of reconstruc-
tion quality as the geometric information is notably more

sensitive to precision than other attributes. However, effective
lossless compression requires complex deep context entropy
modeling [65], which is computationally intensive. To address
this challenge, we propose a learnable masking strategy to
prune Gaussians and then losslessly compress coordinate X.
4D Gaussians represent dynamic scenes over time, and not all
Gaussians contribute significantly to the visual fidelity of the
rendered scenes across both spatial and temporal dimensions.
This redundancy occurs when Gaussians have minimal spatial
volume or exhibit little change over time. We extend the
volume masking strategy introduced in [6] from static scene
to dynamic one. A learnable mask parameter 8 € RV is
introduced and followed by a tiny MLP ¢,,, based on which
we generate binary masks M € {0,1}". The masking process
evaluates both the spatial significance and the consistency
of the Gaussian’s attributes over time. The binary mask is
generated as follows:

M = sg(I[(0(¢n(6,1)) > €] — (9 (6,1))) + 0 (¢m(6,1)) (8)

where sg(-) is the stop gradient operator, I(-) is the indicator
function, o (-) is the sigmoid function, and € is the masking
threshold. We use the masking loss L,, in [6] to balance the
accurate rendering and the number of Gaussians eliminated
during training.



D. Deep Context Modeling for Entropy Coding

Ballé et al. [13] employed deep learning methodologies to
gauge the entropy of data targeted for compression. In the
realm of information theory, entropy quantifies the inherent
uncertainty or randomness in a dataset, acting as a constraint
on the maximal average compression rate attainable by any
lossless compression algorithm applied to specific data. Once
the entropy is discerned, an Algorithmic Encoder (AE) [66],
[67] proceeds to compress the data losslessly, adhering to the
entropy values.

We design a deep entropy model to estimate the conditional
probability of attributes of Gaussian primitives, incorporating
both the learnable binary 3D hash grid feature f, and a set
of MLPs parameterized by ®,. The feature f, is the input to
the MLPs, which are optimized to maximize the conditional
probability p(A|fe;®,.). Both f, and @, are optimized using a
rate-distortion loss function [13], as detailed in § IV-G.

E. Hash Grid Compression with Bernoulli Modeling

Efficient compression of the hash grid is crucial for reducing
storage requirements, as hash grid features occupy a significant
portion of the storage. Inspired by [35], the binary nature
of each hash grid entry 6[ allows us to employ a Bernoulli
distrib_ution to accurately model the occurrence of +1 (or —1),
i.e., ® ~ Bernoulli(p). The probability p that a given hash grid
entry 6/ is +1 is estimated based on the empirical distribution
of the binary values across the entire hash grid:

106/ =+1)

p==E ©)

where N is the total number of entries and 1(-) is the indicator
function. This estimation allows us to precisely define the
distribution of ®; for subsequent compression steps.

F. Entropy and Bitstream Calculation

The entropy for each entry 6} in the hash grid is calculated
using the Bernoulli distribution:

H(8)) = —(p(6])10g,(p(6])) + (1 - p(6])) log, (1 — p(6])))
(10)

Finally, the bitstream required to encode the entire hash grid

across all levels is obtained using the AE, which leverages the

entropy values to achieve efficient compression:

1 &I

Ru=53 ) H(6))

I=1i=1

(1)

where N is the total number of binary features across all levels
of the hash grid. Similarly, the bitstream required to encode
the attributes A, based on the learned feature f, and the model
parameters ©,, is calculated as the entropy of A:

Ry =~ ) p(Alfe:0.)logp(A| f:©.) (12)
A

Finally, the total bitstream required for the entire system is the

sum of the bitstreams for both the attributes A and the hash

grid:

R=R,+Ry (13)

G. Loss Function

Our model is optimized using a rate-distortion joint loss
that balances rendering quality and bitstream efficiency. This
loss function integrates entropy loss R, distortion loss D
and masking loss L, to ensure high-quality output while
controlling bitrate consumption:

L=R+ gD+ AL (14)

where A; and A, control the trade-off between rate and
distortion.
Distortion Loss. D measures the reconstruction accuracy:

D = oy Ly + o Lssiy + 3Ly (15)

where L is L1 norm difference between rendered and ground
truth images, Lgsyy measures loss of structural similarity, and
Ly, is a grid-based total-variational loss [68].

V. BITRATE ONLINE ADAPTION FOR DYNAMIC 3DGS
SCENE STREAMING

In this section, we outline the design of the streaming opti-
mization strategy in 4DGStream. We begin by explaining how
ABR streaming operates in dynamic 3DGS scene streaming
in § V-A, followed by the formulation of the optimization
problem in § V-B. Finally, we introduce QoSmooth as a
solution to this problem in § V-E.

A. ABR Streaming Modeling

Scene Model. The GSV is divided into N chunks, each
representing a fixed time window 7. These chunks are encoded
at multiple bitrate levels controlled by distortion parameters,
producing M bitrate versions per chunk. The m-th version of
the i-th chunk, denoted as c; ,,, has a bitrate b,,. Higher bitrates
provide better visual quality, represented by u,,. such that:

uy <up < - <Zuy. (16)

Client Buffer Dynamics. At the client side, a buffer stores
downloaded chunks of the 4DGS scene, ready for playback,
with a maximum capacity of Qmax chunks. Chunks are con-
sumed at a fixed rate of one every T seconds, where 7 is the
chunk duration. Each downloading slot n has a duration 7,
corresponding to the download time of the selected chunk.
The download rate depends on the available average network
bandwidth ¢, during the slot n, which fluctuates due to factors
like congestion or signal strength. The time to download a
chunk at bitrate b, at time slot n, denoted as 7", is given by:
b

m __
T, = —
Cn

a7

The buffer level at slot n, denoted by Q(n), evolves as
chunks are consumed and downloaded. The buffer level Q(n)
is updated based on the playback rate and the download rate
as follows:

m

O(n+ 1) = max (Q(n)T;,o) txn(n)  (18)

where x,,(n) € {0,1} indicates whether a chunk at bitrate b,,

1

finishes downloading within the slot n. The term T% represents



how many chunks are consumed by playback during the
download time 7. This equation accounts for the removal
of chunks for playback and the arrival of newly downloaded
chunks.

To ensure smooth playback, the system must avoid buffer
underflow (i.e., running out of chunks and causing rebuffer-
ing) and buffer overflow (i.e., exceeding the buffer capacity
Omax, Which wastes network resources). Hence, the system
dynamically adjusts the bitrate b,, for new chunk downloads
based on the current buffer level Q(n) and the available
average bandwidth ¢(n) to minimize rebuffering and maintain
continuous playback.

B. Problem Formulation

The objective of the 4DGS streaming system is to max-
imize the playback performance, defined as a combination
of maximizing visual quality and minimizing interruptions
due to rebuffering. This goal is framed as an optimization
problem balancing time-average utility and smooth playback.
Here, time-average utility measures the average quality of the
streamed content based on the chosen bitrates, while playback
smoothness reflects the proportion of uninterrupted playback
time relative to the total duration (including rebuffering).

We consider a discrete horizon of N time steps. Over these
N steps, the time-average normalized utility is defined as:

1 & x,(n)uy,
1 g )

U(N) =
(V) NE Ty

(19)
where m € {1,2,...,M} is the index of the bitrate chosen
at time step n, and uy, is the utility of the highest available
bitrate. This term captures the cumulative utility derived from
the quality of the downloaded chunks over the period N. While
playback smoothness is defined as the ratio of time spent
playing chunks to the total time, including rebuffering:
k-t

T

where k is the number of played-out chunks, 7 is the playback
time of each chunk, and T is the total real time elapsed, in-
cluding both normal playback and any rebuffering. To achieve
both high quality and smooth playback, the system aims to
maximize the joint utility:

S(N) (20)

max (U(N)+ aS(N)) (21)

where o is a tunable parameter balancing smoothness and
quality.

C. Relaxation of the Problem and Rate Stability

Managing the buffer under dynamic network conditions
with finite size constraints Q. is complex, particularly
because network bandwidth ¢, fluctuates unpredictably over
time. Traditional dynamic programming (DP) methods, which
attempt to make optimal decisions over time, require precise
knowledge of the distribution of the bandwidth process ¢,,.
Specifically, DP methods rely on forecasting future states to
compute expected long-term rewards or costs. However, in
real-world scenarios, accurately predicting the distribution of

C, 1s infeasible due to its inherent variability and unpredictabil-
ity. The complexity of predicting future bandwidth makes
traditional DP approaches impractical for real-time video
streaming systems, where decisions must be made quickly
without knowing future conditions.

To address this challenge, we introduce a problem relaxation
by focusing on rate stability rather than imposing strict buffer
constraints at every time step. Instead of directly enforcing
0 < O(n) < Omax, the system is designed to maintain long-
term balance between the download rate and the playback
rate, ensuring that the buffer neither overflows nor depletes
on average over time. This approach simplifies the problem by
avoiding the need for exact knowledge of ¢,. The rate stability
condition is expressed as:

(22)

. 1 m
vy L e fim g 3 T
where m € {1,2,...,M} is the index of the bitrate chosen at
time step n, and the left-hand side represents the time-average
playback rate and the right-hand side represents the time-
average download rate. The system aims to ensure that, over
time, the rate of chunk consumption does not exceed the rate
of chunk downloading, thus preventing both buffer overflow
and underflow.

D. Optimization Objective

The system must maximize the time-average utility U(N)
while maintaining smooth playback S(N):

max lim (U(N)+yS(N))

im
Xm(n) N—reo

(23)

subject to rate stability constraint Eq. 22. Here, y adjusts
the trade-off between prioritizing high video quality and
minimizing rebuffering.

E. QoSmooth: Lyapunov Optimization-based for Bitrate On-
line Adaption

To solve this problem, we propose QoSmooth, a method
designed to deliver a smooth playback experience with a focus
on QoE. It leverages Lyapunov optimization to ensure buffer
stability while dynamically optimizing chunk selection. The
Lyapunov function, L(Q(n)), quantifies the buffer’s deviation
from an ideal state:

(24)

penalizing large deviations that may lead to rebuffering or
buffer overflow. The Lyapunov drift measures the expected
change in L(Q(n)) over time:

AL(Q(n)) = E[L(Q(n+1)) —L(Q(n)) | Q(n)]  (25)

The drift term AL(Q(n)) quantifies how much the buffer devi-
ates over time, and the goal is to minimize this deviation while
maximizing utility. To capture this trade-off, we introduce a
drift-plus-penalty formulation:

AL(Q(n)) - B *Xm (n)um (26)



where 8 is a control parameter that balances buffer stability
and utility maximization. To derive the control policy, we
minimize the drift-plus-penalty expression:

2 2
iy (2041000

— B xpm(n)up, 27)
This policy dynamically selects the bitrate b,, for each chunk
by evaluating the impact on both the buffer Q(n) and the
utility u,,, ensuring smooth playback and high video quality.
The algorithm adjusts chunk selection based on current buffer
occupancy and network conditions.

Rebuffering and Buffer Overflow Penalties. To further
improve system performance, penalties can be introduced for
undesirable events such as rebuffering and buffer overflow.
Rebuffering occurs when the buffer is depleted, leading to
playback stalls. To penalize this, we define a rebuffering
penalty:

Pi(n) =2 -1(Q(n) = 0)

where A is a penalty coefficient that discourages buffer de-
pletion, and I(Q(n) =0) is an indicator function that activates
when the buffer is empty. Similarly, buffer overflow, where the
buffer exceeds its capacity Qmax, results in wasted bandwidth.
This can be penalized using:

(28)

P,,(I’l) =u- H(Q(n) > Qmax) (29)

where u penalizes downloading chunks that cannot be stored.
Incorporating both the rebuffering and buffer overflow
penalties into the optimization framework:

min wm B(n)+u-Po(n)| — B f o (1)1t
mn m=1 (30)
subject to the rate stability constraint Eq. 22

Real-Time Decision Making. To address this optimization
problem in real time, the system continuously monitors both
the buffer level Q(n) and the available network bandwidth
¢(n) at each time slot n. Based on these inputs, the system
dynamically selects the bitrate b, for each video chunk using

the drift-plus-penalty framework described previously.

VI. EXPERIMENTS

In this section, we begin by detailing the experimental
setting of our 4DGStream framework, followed by a se-
ries of evaluation experiments to benchmark Light4D and
4DGStream against existing SOTA methods. We also perform
ablation studies to highlight the contribution of each technical
component in Light4D.

A. Experimental Setting

1) Implementation Details: Our implementation is built
upon the PyTorch framework, with all training and testing car-
ried out on an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
with one NVIDIA A100 GPU with 80GB of memory. Further
hyper-parameters can be found in the appendix.

2) Hyperparameter Settings: In Eq. 14, A4 is set from 5 x
1073 to 1 x 1073 for variable bitrates, and A 1S set to 5 X 1074,
In Eq. 21, o is set to 1, and o, 00,03 in Eq. 15 are set to 1,
0.95, 0.95, respectively. A and u are both set to 1 and f3 is set
to 2 in Eq. 30. The details of the feature dimension and size
of hash feature map in Light4D please refer to the Appendix.

3) Network Traces: To simulate network conditions, we
collected 1,000 throughput traces, each lasting between 200
and 1,000 seconds, from two real-world datasets: (1) the
FCC [69] dataset, which includes over one million through-
put traces gathered in natural environments; and (2) the
3G/HSDPA dataset [70], encompassing mobile throughput
data across various usage scenarios such as buses, trains,
and urban areas. To avoid scenarios where bitrate selection is
trivial—specifically, situations where selecting the maximum
bitrate is always optimal or where the network cannot support
any available bitrate for extended periods—we filtered the
original traces based on the compressed data size to be trans-
mitted. Specifically, we chose traces whose average throughput
ranged from 0.75 to 1 times 5%o of the size required to transmit
30 frames, assuming a frame rate of 30 FPS. The chunk size
was set to 2 seconds, and the buffer size was set to 20 seconds.

4) Training: We adopt a progressive training strategy to get
a more stable training performance. In the first 3,000 iterations,
we optimize 3D Gaussians for frames selected from dis-
tributed intervals without deformation, ensuring stable training
of Gaussian attributes and distribution across spatiotemporal
regions. This reduces the burden on the deformation network
for later stages. From iteration 3,000, we introduce spatiotem-
poral deformation, allowing joint training with the deformation
network. At iteration 20,000, we incorporate entropy loss
to optimize bitstream consumption. The training concludes
after 40,000 iterations, achieving a balance between Gaussian
attributes, deformation, and compression efficiency.

5) Datasets: We follow the methodology outlined in
4DGS [4] to evaluate our approach across multiple datasets.
These include real-world datasets such as the Neural 3D Video
Dataset [14], which comprises six indoor multi-view video
sequences captured by 18 to 21 cameras at a resolution of
2704x2028, and the HyperNeRF Dataset [71], captured with
fewer than 2 cameras in feed-forward settings. For synthetic
data, we experiment with the D-NeRF [20] datasets, designed
for monocular settings with random camera poses per times-
tamp.

6) Baseline methods: Scene Representation. To assess
the quality of novel view syn-thesis and the storage of
the model taken, we compare most recent NeRF-based and
Gaussian Splatting-based SOTAs in the field with Light4D,
including TiNeuVox-B [72], StreamNeRF [23], DyNeRF [14],
Im4D [73], KPlane [16], HexPlane-Slim [68], 3DGS [1],
V4D [18], NeRFPlayer [15], HyperReel [74], MixVoxels [75],
FFDNeRF [17], MSTH [76], 4DGS [4], Spacetime [5],
CompD3D [60], E-D3DGS [77], QUEEN [61]. The results
from these baseline methods originate from their papers, and
some are from papers [4], [5].

System. To the best of our knowledge, we are the first to pro-
pose a distortion joint optimization framework for streaming
GSV. To validate the performance of 4DGStream, we design



TABLE I: Quantitative results on the synthesis dataset. The best and the second best results are denoted by pink and yellow.
The rendering resolution is set to 800x800. “Time” in the table stands for training times.

Model | PSNR (dB) t SSIM 1 LPIPS| | Time] | FPS*? Storage (MB) | FPS/Storage 1
TiNeuVox-B 32.67 0.97 0.04 28 mins 1.5 48 0.03125
KPlanes 31.61 0.97 - 52 mins 0.97 418 0.000255
HexPlane-Slim 31.04 0.97 0.04 11m 30s 2.5 38 0.06579
3DGS 23.19 0.93 0.08 10 mins 170 10 17.00
FFDNeRF 32.68 0.97 0.04 - <1 440 0.00227
MSTH 31.34 0.98 0.02 6 mins - - -
V4D 33.72 0.98 0.02 6.9 hours 2.08 377 0.00552
4DGS 34.05 0.98 0.02 8 mins 82 18 4.56
CompD3D 32.19 0.97 0.04 8 mins 150 ~ 159 0.94
Ours-Lite 33.12 0.97 0.03 19 mins 69.2 1.6 43.25
Ours-Medium 33.45 0.98 0.02 29 mins 61.7 2.5 24.68
Ours-Large 33.89 0.98 0.02 41 mins 47.6 4.1 11.60

three baseline methods for comparison, drawing from existing
SOTA approaches and well-developed tools in the industry:

o Vanilla Streamable 3DGS (denoted as 3DGS"): Inspired
by DynamicGaussian [3] and MGA [12], we reconstruct
3DGS on a per-frame basis, creating a sequence of 3DGS
representations to form a volumetric video. To reduce
storage consumption, we apply the strategy from [11],
achieving a 25x reduction in overall size. Further, we
customize the third-party compression codec Draco [78],
originally designed for compressing 3D objects like point
clouds and meshes, to compress 3D Gaussians into vari-
able bitrates. Since different attributes exhibit varying
sensitivities to compression, careful parameter selection
for each attribute is necessary. To handle this, we employ
a similar Lyapunov optimization approach as described
in [57], enabling dynamic parameter selection under
fluctuating network conditions to ensure smooth playback
while preserving visual quality.

o 3DGStream [30]: An innovative approach that leverages
3D Gaussians and a neural transformation cache for
efficient and rapid streaming of GSV in photo-realistic
free-viewpoint videos.

« Streamable 4DGS (denoted as 4DGS'): 4DGS [4] is a
SOTA method that reconstructs GSV with high visual
quality while maintaining a small storage footprint. We
generate multiple bitrate levels of scene representation by
capping the number of Gaussian primitives and adjusting
the size of the hash grid feature in the deformation
network. This is combined with the streaming strategy
QoSmooth (§ V-E) to enhance streaming performance.

To further reduce storage requirements of 4DGS' and
3DGStream, we apply a codebook encoding strategy [11],
enhancing their practicality in streaming scenarios. More im-
plementation details of baseline methods please refer to the
Appendix of our full paper.

7) Evaluation Metrics: Visual quality. Following common
standards, training and evaluation are performed at half resolu-
tion, with the initial camera reserved for evaluation. Evaluation
metrics include peak-signal-to-noise ratio (PSNR), percep-
tual quality measure LPIPS [79], structural similarity index
(SSIM) [80] and its extensions dissimilarity index measure
(DSSIM). For DSSIM, we use the structural similarity function

from scikit-image library, and set data range to 2.0.
Evaluation metrics of video streaming. We evaluate the
effectiveness of the video streaming system through measuring
various metrics that reflect QoE for the user, including average
video quality, playback smoothness, average rendering speed
over time duration 7. More specifically, average video quality
is quantified by the average PSNR, denoted as V(N) and
playback smoothness is measured by the ratio of playback time
without rebuffering S(N) in Eq. 20. We treat average rendering
speed P(N) as a summation operator for the weighted com-
bination of V(N) and S(N) to evaluate its overall impact on
QoE. We combine these key QoE metrics into a single score
that reflects the overall experience:

QoE= )’ (a-V(N)+B-S(N))

P(N)

3D

where a and 8 are the importance weight of each factor and
are both set to 1 in our experiments.

B. Experiment Evaluation: Light4D

1) Performance on Synthetic Dataset: The results in syn-
thetic dataset [20] are summarized in Tab. I. While current
dynamic hybrid representations can produce high-quality re-
sults, they often come with the drawbacks of slow rendering
speeds and high data storage requirements. Although 3DGS [1]
is fast and compact, it fails to reconstruct GSV due to its
lack of dynamic motion modeling. 4DGS [4] enjoys both
the highest rendering quality within the synthetic dataset and
fast rendering speeds but its storage consumption is still non-
negligible. We report our methods in three different sizes,
balancing reconstruction quality and model size. Specifically,
we adjust the parameters Ay, A,,, and the warm-up steps during
training to achieve different model sizes; for more details,
please refer to our supplementary file. Our Lite version
achieves comparable visual quality (with only a 2.7% drop
in PSNR compared to 4DGS), while requiring just 8.9%
of the storage consumed by 4DGS. This results in a 9.5x
improvement in FPS/Storage. By increasing the model size to
22.7%, the Large version achieves 99.5% of PSNR of 4DGS
and achieves a 2.54x improvement in FPS/Storage. These
enhancements demonstrate the effectiveness of our models in
balancing quality and storage efficiency.
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TABLE II: Quantitative comparisons on Neu3D’s dataset. The best and the second best results are denoted by
pink and yellow.

Method | PSNR (dB) 1 DSSIM | LPIPS | | Time | | FPS 1T Storage (MB)/ FPS/Storage 1
DyNeRF 29.58 0.020 0.083 - 0.015 28 5¢74
HexPlane 31.71 - 0.075 - - 200 -
StreamRF 28.26 - - - 10.9 5310 0.002

NeRFPlayer 30.69 - 0.111 6 hours 0.05 5130 <9e~®
HyperReel 31.10 - 0.096 9 hours 2 360 0.006
HexPlane-all * 31.70 0.014 0.075 12 hours 0.2 250 8e 4
K-Planes 31.63 0.018 - 1.8 hours 0.3 311 9e4
Mix Voxels-L 31.34 0.017 0.096 - 37.7 500 0.075
Mix Voxels-X 31.73 0.015 0.064 - 4.6 500 0.0092
Im4D 32.58 - 0.208 - 5 93 0.053
3DGS 32.08 - - 41.5 hours 390 14130 0.027
3DGStream 31.67 - - 1 hour 215 2280 0.094
SpacetimeGS 32.05 0.014 0.044 ~ 18.5 mins 140 200 0.7

4DGS 31.15 0.016 0.049 40 mins 30 90 0.33
CompD3D 30.46 - 0.15 1 hour 118 338 0.349
E-D3DGS 31.31 - 0.037 1.87 hours 74.5 35 2.12
QUEEN-s 31.89 - 0.139 23.25 mins 345 204 1.69
QUEEN-m 32.03 - 0.137 29.8 mins 321 207 2.55
QUEEN-1 32.19 - 0.136 39.5 mins 248 225 1.10
Ours-Lite 30.92 0.017 0.053 45 mins 27 3.1 8.7

Ours-Medium 31.53 0.016 0.049 58 mins 25 42 5.95
Ours-Large 31.88 0.016 0.047 1.1 hours 22 5.6 3.92

* The metrics of the model are tested without “coffee martini” and resolution is set to 1024x768.
 Corresponds to the model trained on longer sequence on the Flame Salmon scene.

—
e >

BaE

(e) HyperReel. (f) K-Plane. (g) SpaceGS. (h) Ours.

Fig. 4: Qualitative comparisons on the Neural 3D Video Dataset.

TABLE III: Ablation study on different components.‘C’, ‘M’, and ‘H’ denote deep compression for attributes, learnable masking,
binary hash grid feature, respectively. *#Gauss’ denotes the number of Gaussians.

Method \Dataset Flame Salmon Flame Steak

cC M H PSNR  #Gauss  Storage = FPS  FPS/Storage | PSNR  #Gauss  Storage = FPS  FPS/Storage
Vanilla 30.87 109K 93MB 337 0.66 31.65 97 K 89 MB 35 1.37

v 30.87 131 K 16 MB 294 1.83 31.65 118 K 17MB 305 1.79

v v 31.23 87 K I5MB 303 2.02 32.08 76 K 16 MB  31.7 1.98

v v v 31.25 92 K 59MB 281 2.81 32.36 94 K 54MB 279 2.79

2) Performance on Neu3D'’s Dataset: We summarize the while the Lite version requires only 3.3%, 1.6%, and 3.4%
quantitative results in Tab. II and the qualitative comparisons of the data storage used by Im4D, SpacetimeGS, and 4DGS,
in Fig. 4. Our methods achieve similar reconstruction quality respectively. The Large version offers the third-best visual



TABLE IV: Quantitative results on HyperNeRF’s vrig dataset.

1.0 e T i . . .
. /J‘ 23— " o bl Paowith, T Rendering resolution is set to 960x540. The best and the
f—s 4 2 .
e 34;;' I < %‘ second best results are denoted by pink and yellow.
o
Z / ./ 205
g 30 [ aos § %I Model | PSNR 1 MS-SSIM + | FPS 1 | Storagel
by I —e— 3DGS'
2 TR e 7 Nerfies 222 0.803 <1 -
; = 0.0 ——T— T HyperNeRF 22.4 0.814 <1 -
Y ey R Sl TiNeuVox-B 24.3 0.836 1 48
e 3DGS 19.7 0.680 55 52
(a) (b) FFDNeRF 242 0.842 0.05 440
V4D 24.8 0.832 0.29 377
Fig. 5: Results of Neu3D’s Dataset Streaming. (a) Visual 4DGS 25.2 0.845 34 61
Quality vs. Size Curve of Methods: Visual quality is measured gf’l%%)é]s) 2255;‘63 O'?g 113%83 N37320
in PSNR, and size is calculated for one 2-second chunk across T ) 0533 g —
various bitrate levels. (b) Comparison of Overall Normalized Oﬁizzl\,};ium 249 0.840 2 36
QoE: Baseline methods are tested under 10x larger bandwidth. Ours-Large 25.4 0.847 19 5.9

TABLE V: Average Total Runtime (hash grid coding time) in
seconds for encoding/decoding across different datasets under
varying Ay. The values are displayed in the format: avg. (std.).

6

3

w/ rate stability =~ —— w/o rate stability

sl LRI

w/ rate stability —— wi/o rate stability

_I_H?_H_LUﬂﬂﬂ_l_L

=

Bitrate Level (Mbps)

Buffer Occupancy (Chunks)
IS

4
’ , Aq \Dataset Synthesis Neu3D’s HyperNeRF’s
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Time (Step9) LT sy le-4 ~0.09 (0.04)  ~0.13 (0.08)  ~0.15 (0.09)
Se-5 ~0.08 (0.03)  ~0.13 (0.08)  ~0.14 (0.09)
@ (b)

Fig. 6: Comparison of selected bitrate levels (a) and buffer
occupancy (b) with and without rate stability control in
QoSmooth using FCC dataset [69]

TABLE VI: Comparison of average performance with and
without rate stability control in QoSmooth using entire network
traces. The values are displayed in the format: avg. (std.).

U(N) S(N) Bitrate 1 Buffer | Swiches |

w/ Stability 0.978 (0.02) 0.948 (0.03) 5.479 (0.44) 0.324 (1.63) 0.06 (<0.01)

quality while requiring just 6.0%, 2.7%, and 6.2% of the data n
w/o Stability 0.904 (0.07) 0.976 (0.01) 5.08 (0.53) 0.550 (1.44) 0.161 (0.04)

storage compared to these methods.

3) Performance on HyperNeRF’s Dataset: We present the
quantitative results on HyperNeRF’s dataset in Tab. IV, re-
spectively. Our Large version achieves the best reconstruction
quality while maintaining relatively small storage consumption
(9.6% of that of 4DGS). Additionally, the Medium version has
the second smallest data size while achieving reconstruction
quality comparable to that of 4DGS.

C. Analysis of Streaming Performance of 4DGStream

Chunk size. We generate multiple bitrate levels for each
method by controlling the number of Gaussian primitives
and adjusting model size. To make the baseline methods
more compact and streamable, we apply effective pruning,
quantization, and codebook encoding strategies from [11].
Fig. 5a shows the bitrate levels for each method, with the
dashed line representing the original uncompressed versions
of the baseline methods. Despite significant efforts to reduce
storage requirements, achieving approximately 3%, 3.4x, and
23x data reduction for 4DGS', 3DGStream, and 3DGST,
respectively, the baseline methods remain at least an order
of magnitude larger than our proposed method 4DGStream.

Rendering Speed. Rendering speed is a critical metric that
strongly impacts QoE, as outlined in our QoE model (Eq. 31).
Tab. II presents the average rendering speed for each method.
While Light4D may have slower rendering performance, its
compactness compensates for the potential QoE drop caused

by the slower rendering. In contrast, the higher rendering
speeds of 3DGStream and 3DGS' help offset the QoE re-
duction caused by the transmission latency due to their larger
data sizes.

Coding Time. 4DGStream is the first to integrate a dis-
tortion joint optimization framework into GSV streaming,
requiring additional encoding and decoding compared to
baseline methods due to entropy modeling and algorith-
mic coding. Our codec proceeds in two stages. First, dur-
ing continuous-attribute compression (§ IV-D), a single for-
ward pass of the binary 3D hash-grid feature f, through a
lightweight set of MLPs @, produces the probability model
for each attribute; this step accounts for roughly 70% of the
total encoding/decoding time. Second, in hash-grid feature
compression (§ IV-E), the binary nature of hash grid values
allows for fast encoding/decoding using the Bernoulli distri-
bution. The Bernoulli parameterp is computed in O(N) time
by counting the proportion of positive entries, as shown in
Eq. 9. The aggregate runtimes are reported in Table V. In our
experiments, the coding time for each chunk is only 5% to
10% of the chunk duration, making 4DGStream highly suitable
for real-time streaming.

Comparison on overall QoE. The baseline methods were
tested under a bandwidth setting that was 10X higher (ap-
proximately 40 to 60 Mbps) than that used for 4DGStream.



Despite this significant advantage for the baseline methods,
4DGStream still achieved QoE improvements of 36.71%,
76.47%, and 158.73% compared to 4DGS, 3DGS', and
3DGStream, respectively, when considering all key metrics
from the QoE model in Eq. 31.

D. Ablation Study

Effectiveness of each component in Light4D. To assess the
effectiveness of the proposed components in Light4D, we
performed an ablation study summarized in Tab. III, using
the Flame Salmon and Flame Steak scenes from Neu3D’s
dataset. We used a customized version of 4DGS, incorporating
hash grid features [27], as the baseline for our method.
The component labeled ‘C’ introduces deep entropy coding
for attributes. This approach results in an average data size
reduction of 87.2%. The spatiotemporal learnable masking
component further reduces less important Gaussians over time,
contributing an additional decrease in data size and improving
visual quality by eliminating noisy Gaussians. Binarizing
the hash grid values enables precise Bernoulli distribution
modeling of the CDF for AE compression, resulting in a 12.7%
reduction in data size.

Effectiveness of rate stability control in QoSmooth. Fig. 6a
and Fig. 6b showcase a detailed comparison of the streaming
statistics trending curve between with and without using rate
stability control using FCC dataset, while Tab. VI illustrates
the detailed metrics using the entire network traces. With the
help of rate stability control (§ V-E), the selected bitrate re-
mains stable even under high bandwidth variance (up to 30%),
with the number of bitrate switches (proportion of changes
across consecutive chunks) as low as 6.1%, representing a
62.5% reduction compared to the case without rate stability
control. Additionally, rate stability control improves the time-
average utility U(N) by 8.1%, ensuring a stable playback
experience while maintaining high visual quality.

VII. CONCLUSION

We proposed 4DGStream, a comprehensive framework that
integrates Light4D for compact dynamic 3D scene represen-
tation and QoSmooth for effective online bitrate adaptation
during video streaming. Light4D efficiently compresses dy-
namic 3D scenes using binarization-assisted spatiotemporal
optimization, incorporating binary 3D hash grids, spatiotempo-
ral deformation networks, and a spatiotemporal-aware masking
strategy. These innovations result in over 10x data reduction
compared to existing SOTA methods on synthetic datasets,
and reduce storage requirements to as low as 3.3% on real-
world datasets, all without compromising visual quality or
rendering speed. QoSmooth significantly enhances playback
smoothness by reducing bitrate level switches by 61.6%,
while maintaining high visual quality by increasing time-
average utility by 26.2%. With all these advantages combined,
4DGStream achieves QoE improvements of up to 158.73%
compared to baseline methods, making it well-suited for real-
time streaming applications with limited storage and network
bandwidth.
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